Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:17:48.476Z Has data issue: false hasContentIssue false

Temperature-HF fugacity trends during crystallization of calcite carbonatite magma in the Fen complex, Norway

Published online by Cambridge University Press:  05 July 2018

Tom Andersen
Affiliation:
Mineralogisk-Geologisk Museum, Sars gate N-0562 Oslo 5, Norway
Håkon Austrheim
Affiliation:
Mineralogisk-Geologisk Museum, Sars gate N-0562 Oslo 5, Norway

Abstract

Calcite carbonatite (søvite), associated apatite cumulates and contact metasomatic phlogopite-rocks in the Fen complex (S. Norway) contain coexisting apatite and phlogopite. Two distinct compositional groups are recognized: fluorapatite (XF = 0.5–0.8) coexists with hydroxy-phlogopite with XF = 0.11–0.26, whereas hydroxyapatite (XF = 0.34–0.44) coexists with low-F hydroxy-phlogopite (XF ≈ 0.03). Apatite-biotite geothermometry suggests that the minerals equilibrated at igneous temperatures (less than 1200 to ca. 625 °C), and were not significantly disturbed by late low-temperature re-equilibration. This, combined with HF-barometry based on apatite-fluid and phlogopite-fluid F-OH exchange equilibria, makes it possible to recognize two crystallization trends at different levels of hydrogen fluoride fugacity. The existence of such trends reflects internal buffering of the HF fugacity by apatite and/or phlogopite. The recorded differences in HF fugacity suggest that two or more independent or semi-independent lines of magmatic descent gave rise to calcite carbonatite magma in the Fen complex. Combined apatite-phlogopite geothermometry and hydrogen fluoride barometry is a useful tool enabling us to see through post-magmatic alteration of carbonatites, and to establish primary magmatic controls even in cases where carbonate and iron-titanium oxide minerals have re-equilibrated at much lower temperatures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderton, D. H. M., Pearce, J. A., and Potts, P. J. (1980) Rare earth mobility during granite alteration: evidence from southwest England. Earth Planet. Sci. Lett. 49, 149–65.CrossRefGoogle Scholar
Åmli, R. and Griffin, W. L. (1975) Microprobe analysis of REE minerals using empirical correction factors. Am. Mineral. 60, 599606.Google Scholar
Andersen, T. (1983) Iron ores in the Fen central complex, Telemark (S. Norway): Petrography, chemical evolution and conditions of equilibrium Norsk Geol. Tidsskr. 63, 7382.Google Scholar
Andersen, T. (1984) Secondary processes in carbonatites: petrology of ‘rødberg’ (hematitecalcite-dolomite carbonatite) in the Fen central complex, Telemark (South Norway). Lithos, 17, 227–45.CrossRefGoogle Scholar
Andersen, T. (1986a) Magmatic fluids in the Fen carbonatite complex S. E. Norway: Evidence of mid-crustal fractionation from solid and fluid inclusions in apatite. Contrib. Mineral. Petrol. 93, 491503.CrossRefGoogle Scholar
Andersen, T.(1986b) Compositional variation of some rare earth minerals from the Fen complex (Telemark S. E. Norway): Implications for the mobility of the rare earths in a earbonatite system. Mineral. Mag. 50, 503–9.CrossRefGoogle Scholar
Andersen, T. (1987) Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite 93 magma: REE and isotopic evidence from the Fen complex S. E. Norway. Chem. Geol., lsotope Geosci. Sect. 65, 147–66.CrossRefGoogle Scholar
Andersen, T. (1988a) Evolution of peralkaline calcite carbonatite magma in the Fen complex S. E. Norway. Lithos, 22, 99112.CrossRefGoogle Scholar
Andersen, T. (1988b) Origin and significance of fluid inclusions in matrix minerals from the Fen carbonatite complex, Norway. Geol. Soc. India Mere. 11, 2536.Google Scholar
Andersen, T. (1989) Carbonatite-related contact metasomatism in the Fen complex, Norway: Effects and petrogenetic implications. Mineral. Mag. 53, 395414.CrossRefGoogle Scholar
Andersen, T. and Taylor, P. N. (1988) Lead isotope geochemistry of the Fen carbonatite complex S. E. Norway: Age and petrogenetic implications. Geochim. Cosmochim. Acta, 52, 209–15.CrossRefGoogle Scholar
Andersen, T. and Qvale, H. (1986) Pyroclastic mechanisms for carbonatite intrusion: Evidence from intrusives in the Fen central complex S. E. Norway. J. GeoL 94, 762–9.Google Scholar
Bailey, J. C. (1980) Formation of cryolite and other aluminofluorides: a petrologic review. Bull. geol Soc. Denmark, 29, 145.Google Scholar
Barth, T. F. W. and Ramberg, I. B. (1966) The Fen circular complex. In Carbonatites (Tuttle, O. F. and Gittins, J., eds). Interscience, New York, pp. 225–57.Google Scholar
Bergstøl, S. and Svinndal, S. (1960) The carbonatite and peralkaline rocks of the Fen area. Nor. geol. unders. 208, 99105.Google Scholar
Biggar, G. M. (1969) Phase relationships in the join Ca(OH)2–CaCO3–Ca3(PO4)2–H2O at 1000 bars. Mineral. Mag. 37, 7582.CrossRefGoogle Scholar
Binder, G. and Troll, G. (1989) Coupled anion substitution in natural carbon-bearing apatites. Contrib. Mineral. Petrol. 101, 394401.CrossRefGoogle Scholar
Brøgger, W. C. (1921) Die Eruptivgesteine des Kristianiagebietes, IV. Das Fengebiet in Telemark, Norwegen. Vit. Selsk. Skr., I Mat. Nat. Klasse 1920, 1, Kristiania, 494 pp.Google Scholar
Chernysheva, Ye. A., Petrov, L. L., and Chernyshev, L. V. (1976) Distribution of fluorine between coexisting phlogopite and apatite in carbonatites and the behaviour of fluorine in the carbonatite forming process. Geochem. Internat. 13, 3, 1422.Google Scholar
Clark, A. M. (1984) Mineralogy of the Rare Earth Elements. In Rare Earth Geochemistry. Developments in Geochemistry 2 (Henderson, P., ed.), pp. 3362. Elsevier, Amsterdam.CrossRefGoogle Scholar
Dahlgren, S. (1984) Carbonatite-, sulphide-, and silicate magma immiscibility in the Langeto dyke, Fen complex (abstract). Geolognytt, 20, 20.Google Scholar
Dahlgren, S. (1987) The satellitic intrusions in the Fen carbonarite alkaline rock province, Telemark, southeastern Norway. Unpubl. Cand. Scient. Thesis, University of Oslo. 298 pp.Google Scholar
Dawson, J. B. and Fuge, R. (1980) Halogen content of some African primary carbonatites. Lithos, 13, 139–43.CrossRefGoogle Scholar
Drake, M. J. and Weill, D. F. (1972) New rare earth element standards for electron microprobe analysis. Chem. Geol. 10, 179–81.CrossRefGoogle Scholar
Faye, F. H. and Hogarth, D. D. (1969) On the origin of 'reverse pleochroism’ of a phlogopite. Can. Mineral. 10, 2534.Google Scholar
Gittins, J. (1979) Problems inherent in the application of calcite-dolomite geothermometry to carbonatites. Contrib. Mineral. Petrol. 69, 14.CrossRefGoogle Scholar
Griffin, W. L. and Taylor, P. N. (1975) The Fen damkjernite: Petrology of a ‘central complex kimberlite'. Phys. Chem. Earth, 9, 163–77.CrossRefGoogle Scholar
Heinrich, E. W. (1966) The geology of carbonatites. Rand McNally & Co., Chicago, 555 pp.Google Scholar
Hogarth, D. D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites, Genesis and evolution (Bell, K., ed.), Unwin Hyman, London, pp. 105148.Google Scholar
Chao, G. Y., and Townsend, M. G. (1987) Potassium and fluorine-rich amphiboles from the Gatineau area, Quebec. Can. Mineral. 25, 739–53.Google Scholar
Högfeldt, E. (1982) Stability constants of metal-ion complexes. Part A: Inorganic ligands. IUPAC Chemical Data Series, No. 21. Pergamon Press, Oxford. Google Scholar
Knudsen, C. and Rönsbo, J. (1989) Distribution, texture and mineral chemistry of apatite from Qaqarssuk carbonatite complex, central West Greenland. In Knudsen, C.: En petrografisk, geokemisk og strukturel undersøgelse af Qaqarssuk karbonatit komplekset, specielt reed henblik pd genesen av apatit mineraliseringer i karbonatit. Licentiatafhandling, Grønlands Geologiske Underscgelse, København. 26 pp.Google Scholar
Korshinskij, M. A. (1981) Apatite solid solution as indicators of the fugacity of HCl° and HF° in hydrothermal fluids. Geochem. lnternat. 18, 3, 44450.Google Scholar
Kresten, P. and Morogan, V. (1986) Fenitization at the Fen complex, southern Norway. Lithos, 19, 2742.CrossRefGoogle Scholar
Le Bas, M. J. and Handley, C. D. (1979) Variation in apatite composition in ijolitic and carbonatitic igneous rocks. Nature, 279, 5456.CrossRefGoogle Scholar
Ludington, S. (1978) The biotite-apatite geothermometer revisited. Am. Mineral. 63, 551–53.Google Scholar
McConnell, D. (1973) Apatite, its crystal chemistry, mineraology, utilization and geologic and biologic occurrences. Springer Verlag, Berlin etc. (Applied Mineralogy, Vol. 5).Google Scholar
Mian, I. and LeBas, M. J. (1987) The biotitephlogopite series in fenites from the Loe Shilman carbonatite complex, NW Pakistan. Mineral. Mag. 51, 397408.CrossRefGoogle Scholar
Moller, P., Morteani, G., and Schley, F. (1980) Discussion of REE distribution patterns of carbonatites and alkalic rocks. Lithos, 13, 171–9.CrossRefGoogle Scholar
Munoz, J. L. (1984) FOH and C1-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy, 13, 469–93.Google Scholar
Munoz, J. L. and Ludington, S. (1974) Fluorine-hydroxyl exchange in biotite. Am. J. Sci., 274, 396413.CrossRefGoogle Scholar
Rønsbo, J. G. (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilfmaussaq intrusion, South Greenland. Am. Mineral., 74, 896901.Google Scholar
Sæether, E. (1957) The alkaline rock province of the Fen Area in southern Norway. Det Kg. Nor. Vitensk, Selsk. Skr. 1957, 1, Trondheim, 148 pp.Google Scholar
Secher, K. and Larsen, L. M. (1980) Geology and mineralogy of the Sarfart6q carbonatite complex, southern West Greenland. Lithos, 13, 199212.CrossRefGoogle Scholar
Sommerauer, J. and Katz-Lehnert, K. (1985a) Trapped melt inclusions in silicate-carbonate-hydroxyapatite from comb-layer alvikites from the Kaiserstuhl carbonatite complex (S.W. Germany). Contrib. Mineral. Petrol. 91, 354–9.CrossRefGoogle Scholar
Sommerauer, J. and Katz-Lehnert, K. (1985b) A new partial substitution mechanism of CO3 2–/CO3OH3– and SiO4 4– for the PO4 3– group in hydroxyapatite from the Kaiserstuhl alkaline complex (S.W. Germany). Ibid., 91, 360–8.Google Scholar
Stormer, J. C. and Carmichael, I. S. E. (1971) Fluorine-hydroxyl exchange in apatite and biotites: a potential igneous geothermometer. Ibid., 31, 121–31.Google Scholar
Tacker, R. C. and Stormer, J. C. (1989) A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic prolems. Am. Mineral., 74, 877–88.Google Scholar
Treiman, A. H. and Essene, E. J. (1985) The Oka carbonatite complex, Quebec: Geology and evidence for silicate-carbonatite liquid immiscibility. Ibid., 70, 1101–13.Google Scholar
Verschure, R. H. and Maijer, C. (1984) Pluri-metasomatic resetting of Rb-Sr whole-rock systems around the Fen peralkaline-carbonatitic ring complex, Telemark, South Norway. Terra Cognita, 4, 191–2.Google Scholar
Wyllie, P. J. (1966) Experimental studies of carbonatite problems: The origin and differentiation of carbonatite magmas. In Carbonatites (Tuttle, O. F. and Gittins, J., eds.). Interscience, New York, pp. 311–52.Google Scholar
Yardley, B. W. D. (1985) Apatite composition and the fugacities of HF and HCl in metamorphic fluids. Mineral. Mag. 49, 77–9.CrossRefGoogle Scholar
Yoder, H. S. and Kushiro, I. (1969) Melting of a hydrous phase: phlogopite. Am. J. Sci. 267-A, 558–82.Google Scholar
Young, E. J., Myers, A. T., Munson, E. L., and Conklin, N. M. (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. U.S. GeoL Surv. Prof. Paper, 650D, 8493.Google Scholar