Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T16:54:55.408Z Has data issue: false hasContentIssue false

Temperature control and calibration in quench furnaces and some new temperature measurements in the system CaO–MgO–Al2O3–SiO2

Published online by Cambridge University Press:  05 July 2018

G. M. Biggar
Affiliation:
Grant Institute of Geology, Edinburgh University, West Mains Road, Edinburgh 9
M. J. O'Hara
Affiliation:
Grant Institute of Geology, Edinburgh University, West Mains Road, Edinburgh 9

Summary

Techniques associated with temperature control and measurement in quench furnaces are described and a study made of calibration problems. Systematic temperature errors as great as 30°C in published results from separate laboratories are explicable. A comprehensive redetermination of temperatures of invariant equilibria in systems containing CaO, MgO, Al2O3, SiO2, Na2O, Fe-O2, has been initiated and the results to date are presented, including approximate determinations of three invariant equilibria in the system CaO-MgO-Al2O3-SiO2 involving liquid, monticellite, spinel, and two of merwinite, periclase, and forsterite, which are important in the melting of magnesia refractories, and precise determinations of the three newly recognized invariant equilibria involving liquid, spinel, diopside, and two of forsterite, melilite, and anorthite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, (T. F.), Allen, (W. C.), and Snow, (R. B.), 1950. Journ. Amer. Ceramic Soc. 33, 121.CrossRefGoogle Scholar
Bowen, (N. L.) and Andersen, (O.), 1914. Amer. Journ. Sci. ser. 4, 37, 488.CrossRefGoogle Scholar
Clark, (S. P.), Schairer, (J. F.), and Neufville, (J. de), 1961. Carnegie Inst. Wash. Year Book, 61, 65.Google Scholar
de Wys, (E. C.) and Foster, (W. R.), 1956. Journ. Amer. Ceramic Soc. 39, 372.CrossRefGoogle Scholar
Ferguson, (J. B.) and Merwin, (H. E.), 1919. Amer. Journ. Sci. set. 4, 48, 81.CrossRefGoogle Scholar
SirHall, (James), 1804. Trans. Roy. Soc. Edin. 6, 105.Google Scholar
Hytönen, (K.) and Schairer, (J. F.), 1961. Unpublished data, diagram reported in O'Hara and Schairer, 1963.Google Scholar
Lea, (F. M.), 1956. The Chemistry of Cement and Concrete, 2nd edn, Edward Arnold Publ. Ltd. Google Scholar
O'Hara, (M. J.) and Schairer, (J. F.), 1963. Carnegie Inst. Wash. Year Book, 62, 107.Google Scholar
Osborn, (E. F.), 1943. Journ. Amer. Ceramic Soc. 26, 321.10.1111/j.1151-2916.1943.tb14452.xCrossRefGoogle Scholar
Osborn, (E. F.) and Schairer, (J. F.), 1941. Amer. Journ. Sci. 239, 715.CrossRefGoogle Scholar
Prince, (A. T.), t954. Journ. Amer. Ceramic Soc. 37, 402.CrossRefGoogle Scholar
Rankin, (G. A.) and Wright, (F. E.), 1915. Amer. Journ. Sei. ser. 4, 39, I.CrossRefGoogle Scholar
Ricker, (R. W.) and Osborn, (E. F.), 1954. Journ. Amer. Ceramic Soc. 37, 133.10.1111/j.1151-2916.1954.tb14011.xCrossRefGoogle Scholar
Solacolu, (S.), 1962. Rev. Roumaine de Metallurgie, 7, 105.Google Scholar