Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T01:20:25.910Z Has data issue: false hasContentIssue false

Synthesis and recovery of bulk Fe4O5 from magnetite, Fe3O4. A member of a self-similar series of structures for the lower mantle and transition zone

Published online by Cambridge University Press:  05 July 2018

J. Guignard*
Affiliation:
ESRF, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex, France
W. A. Crichton
Affiliation:
ESRF, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble cedex, France Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK

Abstract

A multi-anvil press was combined with monochromatic synchrotron X-ray radiation to investigate the synthesis, at high-pressure high-temperature conditions, of a recoverable bulk sample of Fe4O5, from an initial magnetite, Fe3O4, sample. Angle-dispersive diffraction patterns show that magnetite firstly breaks down, into an assemblage of hematite (Fe2O3) + Fe4O5. By increasing temperature at constant load, hematite disappears progressively by either reduction or by melting, or a combination of both. In the final product only Fe4O5 remains and, in the absence of hematite, can be kept stable and be recovered at ambient conditions. Refinement of the diffraction patterns at standard conditions demonstrate that Fe4O5 has the Sr2Tl2O5-type-structure with space group Cmcm and a = 2.8964(2) Å, b = 9.8225(6) Åand c = 12.5808(7) Å. This structure-type and related members of a homologous series, offer the possibility that the general sequence of AB(2+n)X(4+n) chemistries could, under certain conditions, be extended to accommodate prevalent oxygen fugacity or, indeed, other ordered stoichiometries through extension of the c axis by the addition of FeO6 octahedral blocks. This structural series, as in other systems, offers possibilities of hosting charge-transfer, Jahn-Teller and other electronic phenomena − as well as supporting metric distortions. Each of these possibilities is highlighted through illustration and extension to related structure-types, most notably from those of the spinels, post-spinels and post-perovskites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C.J., Poirier, J.P., Humler, E. and Hofmann, A.W. (1995) The chemical composition of the Earth. Earth and Planetary Science Letters, 134, 515526.CrossRefGoogle Scholar
Andrault, D. and Bolfan Casanova, N. (2001) Highpressure phase transformations in the MgFe2O4 and (Fe2O3)–(MgSiO3) systems. Physics and Chemistry of Minerals, 28, 211217.CrossRefGoogle Scholar
Berastegui, P., Eriksson, S., Hull, S., Garcia Garcia, F.J. and Eriksen, J. (2004) Synthesis and crystal structure of the alkaline-earth thallates MnTl2O(3+n) (M = Ca, Sr). Solid State Sciences, 6, 433441.CrossRefGoogle Scholar
Colonna, F., Fasolino, A. and Meijer, E.J. (2011) Highpressure high-temperature equation of state of graphite from Monte Carlo simulations. Carbon, 49, 364368.CrossRefGoogle Scholar
Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C., Rozenberg, G.K., Ahuja, R., Osorio-Guillen, J.M., Dmitriev, V., Weber, H.P., Le Bihan, T. and Johansson, B. (2003) The structure of the metallic high-pressure Fe3O4 polymorph: an experimental and theoretical study. Journal of Physics: Condensed Matter, 15, 76977706.Google Scholar
Evrard, O., Malaman, B., Jeannot, F., Courtois, A., Alebouyeh, H. and Gerardin, R. (1980) Mise en évidence de CaFe4O6 et détermination des structures cristallines des ferrites de calcium CaFe2+nO4+n (n=1, 2, 3): Un nouvel exemple d’intercroissance. Journal of Solid State Chemistry, 35, 112119.CrossRefGoogle Scholar
Fei, Y., Frost, D.J., Mao, H.K., Prewitt, C.T. and Häusermann, D. (1999) In situ structure determination of the high-pressure phase of Fe3O4. American Mineralogist, 84, 203206.CrossRefGoogle Scholar
Fleet, M.E. (1981) The structure of magnetite. Acta Crystallographica B, 37, 917920.CrossRefGoogle Scholar
Goutenoire, F., Caignaert, V., Hervieu, M., Michel, C. and Raveau, B. (1995a) Chemical twinning of the rock salt structure: CaTl2O4 and Ca2Tl2O5, the first two members of the new series CanTl2On+3 . Journal of Solid State Chemistry, 114, 428434.CrossRefGoogle Scholar
Goutenoire, F., Caignaert, V., Hervieu, M., Michel, C. and Raveau, B. (1995b) The calcium thallate, Ca3Tl2O6, the third member of the series CanTl2nOn+3 . Journal of Solid State Chemistry, 115, 508513.CrossRefGoogle Scholar
Goutenoire, F., Caignaert, V., Hervieu, M. and Raveau, B. (1995c) The calcium thallate, an intergrowth of the CaTl2O4 and Ca2Tl2O5 structures, member n=1.5 of the series CanTl2nOn+3 . Journal of Solid State Chemistry, 115, 134141.CrossRefGoogle Scholar
Haavik, C., Stolen, S., Fjellvag, H., Hanfland, M. and Häusermann, D. (2000) Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe–O system at high pressure. American Mineralogist, 85, 514523.CrossRefGoogle Scholar
Hammersley, A.P. (1997) FIT2D: An introduction and overview. ESRF Internal Rep. ESRF97HA02T, European Synchrotron Radiation Facility, Grenoble, France.Google Scholar
Hanfland, M., Syassen, K. and Sonnenschein, R. (1989) Graphite under pressure – Equation of state and 1st- order Raman modes. Physical Review B, 40, 19511954.CrossRefGoogle Scholar
Ito, E., Fukui, H., Katsura, T., Yamazaki, D., Yoshino, T., Alizawa, Y., Kubo, A., Yokoshi, S., Kawabe, K., Zhai, S.M., Shatzikiy, A., Okube, M., Nozawa, A. and Funakoshi, K.I. (2009) Determination of highpressure phase equilibria of Fe2O3 using the Kawaitype apparatus equipped with sintered diamond anvils. American Mineralogist, 94, 205209.CrossRefGoogle Scholar
Kaminsky, F. (2012) Mineralogy of the upper mantle: A review of “super-deep” mineral inclusions in diamond. Earth-Science Reviews, 110, 127147.CrossRefGoogle Scholar
Kusinski, J., Jasienska, S. and Monty, C. (1994) Microstructural and microanalytical examinations of partially reduced doped wustites. Solid State Ionics, 68, 185192.CrossRefGoogle Scholar
Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R. and Zhao, Y. (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5 . Proceedings of the National Academy of Sciences of the United States of America (PNAS), 108, 1728117285.CrossRefGoogle ScholarPubMed
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Le Godec, Y., Martinez-Garcia, D., Mezouar, M., Syfosse, G., Itiè, J.P. and Besson, J.M. (2000) Thermoelastic behaviour of hexagonal graphite-like boron nitride. High Pressure Research, 17, 3546.CrossRefGoogle Scholar
Mao, H.K., Takahash, T., Basset, W.A., Kinsland, G.L. and Merrill, L. (1974) Isothermal compression of magnetite to 320 kbar and pressure-induced phasetransformation. Journal of Geophysical Research, 79, 11651170.CrossRefGoogle Scholar
Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L. and Strobel, P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. American Mineralogist, 95, 200203.CrossRefGoogle Scholar
O’Neill, H.St.C., Rubie, D.C., Canil, D., Geiger, C.A., Ross, C.R. II, Seifert, F. and Woodland, A.B. (1993) Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. Pp. 73–88 in: Evolution of the Earth and Planets (E. Takahashi, R. Jeanloz and D. Rubie, editors). Geophysical Monograph 74, American Geophysical Union, Washington D.C.CrossRefGoogle Scholar
Ono, S. Brodholt, J.P. and Price, G.D. (2008) Firstprinciples simulation of high-pressure polymorphs in MgAl2O4. Physics and Chemistry of Minerals, 35, 381386.CrossRefGoogle Scholar
Ozawa, H., Hirose, K., Tateno, S., Sata, N. and Ohishi, Y. (2010) Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Physics of the Earth and Planetary Interiors, 179, 157163.CrossRefGoogle Scholar
Petříček, V., Dusek, M. and Palatinus, L. (2006) JANA2006. The crystallographic computing system. Institute of Physics, Prague.Google Scholar
Ross, C. R. II, Rubie, D. C. and Paris, E. (1990) Rietveld refinement of the high pressure polymorph of Mn3O4. American Mineralogist, 75, 12491252.Google Scholar
Rozenberg, G.K., Dubrovinsky, L.S., Pasternak, M.P., Naaman, O., Le Bihan, T. and Ahuja, R. (2002) High-pressure structural studies of hematite Fe2O3. Physical Review B, 65, 064112-1-8.CrossRefGoogle Scholar
Shollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T. and Langenhorst, F. (2011) In situ determination of the spinel-post-spinel transition in Fe3O4 at high pressure and temperature by synchrotron X-ray diffraction. American Mineralogist, 96, 820827.CrossRefGoogle Scholar
Woodland, A.B., Frost, D.J., Trots, D.M., Klimm, K. and Mezouar, M. (2012) In situ observation of the breakdown of magnetite (Fe3O4) to Fe4 O5 and hematite at high pressures and temperatures. American Mineralogist, 97, 18081811.CrossRefGoogle Scholar
Woodland, A.B., Schollenbruch, K., Koch, M. and Frost, D.J. (2013) Some solid solutions involving Fe4O5. Mineralogical Magazine 77, 2509. [Goldschmidt Conference 2013, Abstract #6135].Google Scholar
Yamanaka, T., Uchida, A. and Nakamoto, Y. (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4 and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 18741881.CrossRefGoogle Scholar