Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T18:10:38.518Z Has data issue: false hasContentIssue false

Synthesis and characterization of wollastonite-2M by using a diatomite precursor

Published online by Cambridge University Press:  28 February 2018

Daniela Novembre*
Affiliation:
Dipartimento di Ingegneria e Geologia, Università G. D'Annunzio, Chieti Scalo, 66100, Italy
Carla Pace
Affiliation:
Dipartimento di Ingegneria e Geologia, Università G. D'Annunzio, Chieti Scalo, 66100, Italy
Domingo Gimeno
Affiliation:
Departament de Geoquímica, Petrologìa i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, 08028, Spain

Abstract

Solid phase reaction synthesis of wollastonite-2M by a natural rock precursor as the source of amorphous silica and CaCO3 is reported. Chemical treatments were carried out on a diatomitic rock from Crotone (Calabria, Italy) in order to measure its reactive silica and CaCO3 contents. Four series of synthesis were performed at 1000°C at ambient pressure by mixing, at different stoichiometry, the diatomitic rock with a natural limestone as a source of additive CaCO3, and sodium carbonate (Na2CO3) as triggering agent.

Wollastonite-2M was characterized by chemo-physical, crystallographical and morphological-microtextural analyses. All these characterizations, together with infrared and nuclear magnetic resonance (29Si) responses provide values comparable to literature data. Estimation of the amorphous phase in the synthesis powders was performed through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods, resulting in a final product of 96.3% wollastonite-2M.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Karen Hudson-Edwards

References

Aulinas, M., Civetta, L., Di Vito, M., Orsi, G., Gimeno, D., and Fernandez-Turiel, J.L. (2008) The Plinian Mercato eruption of Somma Vesuvius: Magma chamber processes and eruption dynamics. Bulletin of Volcanology, 70, 825840.CrossRefGoogle Scholar
Baker, C.K. and Black, P.A. (1980) Assimilation and metamorphism at a basalt-limestone contact, Tokatoka, New Zealand. Mineralogical Magazine, 43, 797807.CrossRefGoogle Scholar
Beisswenger, A. (1996) The origin of the Canton Saint-Onge wollastonite deposit, Lac-Saint-Jean, Québec. Unpublished MsSc Thesis, Université du Québec à Chicoutimi, Canada, 143 pp.CrossRefGoogle Scholar
Brown, T.J., Bide, T., Walters, A.S., Idoine, N.E., Shaw, R.A., Hannis, S.D., Lusty, P.A.J. and Kendall, R. (2011) World Mineral Production 2005-09. British Geological Survey, Keyworth, Nottingham, UK, 109 pp.Google Scholar
Bryden, R., Konsztowicz, K.J., Caley, W.F. and Kingston, P.W. (1992) Co-dispersion of mullite and wollastonite in aqueous suspensions. Ceramic Engineering & Science Proceedings, 13(9–10), 10581065.CrossRefGoogle Scholar
Chadwick, J.P., Troll, V.R., Ginibre, C., Morgan, D., Gertisser, R., Waight, T.E. and Davidson, J.D. (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: Insights from crystal isotope stratigraphy. Journal of Petrology, 48(9), 17931812.CrossRefGoogle Scholar
Chandrasekhar, S. (1996) Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin. Clay Minerals, 31, 253261.CrossRefGoogle Scholar
Dawson, J.B., Smith, J.V. and Steele, J.M. (1992) 1966 ash eruption of the carbonatite volcano Oldoinyo Lengai: mineralogy of lapilli and mixing of silicate and carbonate magmas. Mineralogical Magazine, 56, 116.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock-Forming Minerals. Volume 2A Single-Chain Silicates. Edition Longman Group London, 668 pp. ISBN 978-0-85272-678-5.Google Scholar
Demidenko, N.I. and Konkina, E.S. (2003) Sintering of ceramic mixtures based on natural wollastonite. Steklo i Keramika, 1, 1516.Google Scholar
Drits, V.A., Derkowski, A., Sakharov, B.A. and Zviagina, B.B. (2016) Experimental evidence of the formation of intermediate phases during transition of kaolinite into metakaolinite, American Mineralogist, 101, 23312346.CrossRefGoogle Scholar
Fernandez, R., Martirena, F. and Scrivener, K.L. (2011) The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41, 113122.CrossRefGoogle Scholar
Fernandez-Turiel, J.L., Gimeno, D., Valero, F., Carnicero, M. and Rodríguez, J.J. (2003) Spatial and seasonal water quality in a mediterranean catchment: the Llobregat river (NE Spain). Environmental Geochemistry and Health, 25, 253474.CrossRefGoogle Scholar
Frost, L. and Vassallo, A.M. (1996). The dexydroxylation of the kaolinite clay minerals using infrared emission spectroscopy ray. Clays and Clay Minerals, 44, 635651.CrossRefGoogle Scholar
Gillespie, P.A. (2007) Silicon Complexes in Silicon Doped Calcium Phosphate Biomaterials. Unpublished BSc Thesis, Queen's University Kingston, Ontario, Canada.Google Scholar
Gimeno, D. and Pugès, M. (2002) Caracterización química de la vidriera histórica de Sant Pere i Sant Jaume (Monestir de Pedralbes, Barcelona). Boletín de la Sociedad Española de la Cerámica y el Vidrio, 41, 1320.Google Scholar
Gimeno, D., Davidovits, J., Marini, C., Rocher, P., Tocco, S., Cara, S., Diaz, N., Segura, C. and Sistu, G. (2003): Desarrollo de un cemento de base silicatada a partir de rocas volcánicas vitreas alcalinas: interpretación de los resultados preindustriales basada en la composición químico-mineralógica de los precursores geológicos. Boletín de la Sociedad Española de la Cerámica y el Vidrio, 42, 6978.CrossRefGoogle Scholar
Gladun, V.D., Khol'kin, A.I. and Akat'eva, L.V. (2007) Prospects for production of synthetic wollastonite in Russia. Inorganic Technology, 41, 606609.Google Scholar
Glasser, F.P. and Taylor, H.F.W. (1978) Quimica de los tratamientos hidrotermicos y de las soluciones acuosas, analisis termogravimetrico y determinacion de humedad. Pp. 357380 in: 25 de “La Quimica de los Cementos” (Por Taylor, H.F.W., editor). Vol. II. Urmo, Bilbao.Google Scholar
Grigoryan, K.G., Arutyunyan, G.A. and Grigoryan, G. (2006) Wollastonite from hydrothermal synthesized calcium hydrometasilicate obtained from modifications of silica. Journal of American Ceramics Society, 89, 374376.CrossRefGoogle Scholar
Grigoryan, K.G., Arutyunyan, G.A., Baginova, L.G. and Grigoryan, G.O. (2008) Synthesis of calcium hydromonosilicate from diatomite under hydrothermal conditions and its transformation into wollastonite. Technology of Inorganic Substances and Materials, 42, 583585.Google Scholar
Grigoryan, G. O., Arutyunyan, G.A., Grigoryan, K.G. and Khachatryan, A.A. (2010) Synthesis of wollastonite from the carbonate-containing gaize of Lithuania. Inorganic Tecnology, 44, 476478.Google Scholar
Gualtieri, A.F. (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. Journal of Applied Crystallography, 33, 267278.CrossRefGoogle Scholar
Harker, R.I. and Tuttle, O.F. (1956) Experimental data on the PCO2-T curve for the reaction: calcite + quartz = wollastonite + carbon dioxide. American Journal of Science, 254, 239256.CrossRefGoogle Scholar
Hench, L.L. (1991) Bioceramic from concept to clinic. Journal of the American and Ceramic Society, 74, 14871510.CrossRefGoogle Scholar
Hesse, K.F. (1984) Refinement of the crystal structure of wollastonite-2M (parawollastonite). Zeitschrift für Kristallographie, 168, 9398.CrossRefGoogle Scholar
Ibañez, A. and Sandoval, F. (1993) La wollastonite: proprietades, sintesis y aplicaciones ceramicas. Boletín de la Sociedad Española de la Cerámica y el Vidrio, 32, 349361.Google Scholar
Ibañez, A., Pena, J. MC. and Sandoval, F. (1990) Solid state reaction for producing β-wollastonite. Ceramic Bullettin, 69, 374378.Google Scholar
Jeffries, C.D. (1944) Quantitative approach to the study of thermal characteristics of clays. Soil Science Society of America Proceedings, 9, 8691.CrossRefGoogle Scholar
Justness, H. (2012) Alternative low-CO2 “green” clinkering processes. Pp. 8389 in: Applied Mineralogy of Cement & Concrete (Broekmans, M.A.T.M. and Pöllmann, H., editors). Reviews in Mineralogy & Geochemistry, 74. Chantilly, Virginia, USA.CrossRefGoogle Scholar
Kotsis, I. and Balogh, A. (1989) Synthesis of wollastonite. Ceramics International, 15, 7985.CrossRefGoogle Scholar
Kridelbaugh, S.J. (1973) The kinetics of the reaction calcite + quartz = wollastonite + carbon dioxide at elevated temperatures and pressures. American Journal of Science, 273, 757777.CrossRefGoogle Scholar
Kurczyk, H.G. (1977) Synthetic diopside and synthetic wollastonite- new raw materials for ceramics. Pp. 2229 in: Proceedings of the 3rd International Meeting on Modern Ceramics Technologies. Advances in Ceramics Processing. Rimini, Italy.Google Scholar
Kurczyk, H.G. and Wuhrer, J. (1971) Synthetic wollastonite and its use in ceramic bodies. Interceram, 2, 119125.Google Scholar
Lacroix, A. (1893) Les Enclaves des Roches Volcaniques. Annales de l'Academie de Mâcon, t X. Protat Frères Imprimeurs, Mâcon.Google Scholar
Larson, A.C. and Von Dreele, R.B. (2004) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.Google Scholar
Le Chatelier, H. (1887) The action of heat on clays. Bullettin de la Société Géologique de France, 10, 204211.Google Scholar
Lin, K., Chang, J. and Lu, J. (2006) Synthesis of wollastonite nanowires via hydrothermal microemulsion method. Materials Letters, 60, 30073010.CrossRefGoogle Scholar
MacKinnon, A. (1990) Wollastonite in Southeastern Ontario. Open File Report 5715, Ontario Geological Survey, Queen's Printer for Ontario, Canada, 289 pp.Google Scholar
Michaud, V. (1995) Crustal xenoliths in recent hawaiites from Mount Etna, Italy: evidence for alkali exchanges during magma-wall rock interaction. Chemical Geology, 122, 2142.CrossRefGoogle Scholar
Nichols, I.A. (1971) Calcareous inclusions in lavas and agglomerates of Santorini volcano. Contributions to Mineralogy and Petrology, 30, 261276.CrossRefGoogle Scholar
Nikonova, N.S., Tikhomirova, I.N., Belyakov, A.V. and Zakharov, A.I. (2003) Wollastonite in silicate matrices. Glass and Ceramics, 60, 342346.CrossRefGoogle Scholar
Nour, W.M.N., Mostafa, A.A. and Ibrahim, D.M. (2008) Recycled wastes as precursor for synthesizing wollastonite. Ceramics International, 34, 101105.CrossRefGoogle Scholar
Novembre, D., Di Sabatino, B., Gimeno, D., Garcia Valles, M. and Martinez-Manent, S. (2004) Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitized rocks (Vico Volcano, Italy). Microporous and Mesoporous Materials, 75, 1–11.CrossRefGoogle Scholar
Novembre, D., Gimeno, D., Pasculli, A. and Di Sabatino, B. (2010 a) Synthesis and characterization of sodalite using natural kaolinite: an analytical and mathematical approach to simulate the loss in weight of chlorine during the synthesis process. Fresenius Enviromental Bulletin, 19, 11091117.Google Scholar
Novembre, D., Pasculli, A., Pace, C., Gimeno, D. and Di Sabatino, B. (2010 b) Synthesis of sodalite from natural kaolinite: A way to simulate the loss in weight of chlorine during the synthesis process by an analytical and mathematical modeling. Rendiconti Online Società Geologica Italiana, 11, 548549.Google Scholar
Novembre, D., Di Sabatino, B., Gimeno, D. and Pace, C. (2011) Synthesis and characterization of Na-X, Na-A, Hydroxisodalite and Na-P zeolites from metakaolinite. Clay Minerals, 46, 336354.CrossRefGoogle Scholar
Novembre, D., Pace, C. and Gimeno, D. (2014) Synthesis and characterization of zeolites K-F and W type using a diatomite precursor. Mineralogical Magazine, 78, 12091225.CrossRefGoogle Scholar
Pasculli, A. and Novembre, D. (2012) A phenomenological-mathematical approach in simulating the loss in weight of chlorine during sodalite synthesis. Computers and Geosciences, 42, 110117.CrossRefGoogle Scholar
Pavlov, V.F., Shefer, A.A. and Shabanov, V.F. (2008) Specific features of the crystallization of wollastonite. Glass Physics and Chemistry, 34, 470473.CrossRefGoogle Scholar
Philip, A. and Binet, M. (1971) Caractéristiques et utilisations céramiques d'un silicate monocalcique de synthèse. Industrial Céramics, 640, 401404.Google Scholar
Pimraksa, K. and Chindaprasirt, P. (2009) Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceramics International, 35, 471478.CrossRefGoogle Scholar
Pirsson, L.V. (1910) On an artificial lava flow and its spherulitic crystallization. American Journal of Science, Fourth Series, 30(176), 91114.Google Scholar
Ptacek, P., Noskova, M., Brandstcetr, J., Soukal, F. and Opravil, T. (2010) Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution. Thermochimica Acta, 498, 5460.CrossRefGoogle Scholar
Rankin, G.A. and Wright, F.E. (1915) The ternary system CaO–Al2O3–SiO2. American Journal of Science, 4th series, 39(229), 179.Google Scholar
Reverdatto, V.V. (1970) Pyrometamorphism of limestones and the temperature of basaltic magmas. Lithos, 3, 135143.CrossRefGoogle Scholar
Rosa, D.F. (2004) Marble enclaves in the melt sheet at the West Clearwater Lake impact crater, Northern Quebec. Unpublished MsSc. Thesis, McGill University, Montréal, Québec, Canada, 146 pp.Google Scholar
Ruggieri, F., Fernandez-Turiel, J.L., Gimeno, D., Valero, F., Garcia, J.C. and Medina, M.E. (2008) Limestone selection criteria for EDr water remineralization. Desalination, 227, 314326.CrossRefGoogle Scholar
Ruggieri, F., Fernandez–Turiel, J.L., Saavedra, J., Gimeno, D. and Garcia-Valles, M. (2010) Environmental geochemistry of ancient volcanic ashes. Journal of Hazardous Materials, 183, 353365.CrossRefGoogle ScholarPubMed
Ruggieri, F., Fernandez–Turiel, J.L., Saavedra, J., Polanco, E. and Naranjo, J.A. (2011) Environmental geochemistry of recent volcanic ashes from Southern Andes. Environmental Chemistry, 8, 236247.CrossRefGoogle Scholar
Sabine, P.A. and Young, B.R. (1975) Metamorphic processes at high temperature and low pressure: the petrogenesis of the metasomatized and assimilated rocks of Carneal, Co. Antrim. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 280(1294), 225269.Google Scholar
Sabine, P.A, Beckinsale, R.D., Evans, J.A. and Walsh, J.N. (1982) Geochemical and strontium-isotope studies of reactions between basic magma, chalk and flint, and the role of groundwater in the Carneal plug, Co Antrim, Northern-Ireland. Journal of Petrology, 23, 427446.CrossRefGoogle Scholar
Sanz, J., Madani, A., Serratosa, J.M, Moya, J.S. and Aza, S. (1988) Aluminium-27 and Silicon-20 Magic-Angle Spinning Nuclear Magnetic Resonance study of the kaolinite-mullite transformation. Journal of the American Ceramic Society, 71, 418421.CrossRefGoogle Scholar
Teir, S., Eloneva, S. and Zevenhoven, R. (2005) Reduction of CO2 emissions by calcium carbonate production from calcium silicates, PRES'05, May 15–18, 2005, Giardini di Naxos / Messina, Italy. Chemical Engineering Transactions, 7, 571576.Google Scholar
Toby, B.H. (2001) EXPGUI, a Graphical User Interface for GSAS. Journal of Applied. Crystallography, 34, 210213.CrossRefGoogle Scholar
Tolliday, J.M. (1959) The Crystal Structure of Parawollastonite and Wollastonite. PhD Thesis, University of London, UK.Google Scholar
Trubnikov, I.L., Solov'ev, L.A. and Lupeiko, T.G. (1989) Synthesis of wollastonite in salt melts, Steklo Keramika, 12, 1516.Google Scholar
Vakalova, T.V., Pogrebenkov, V.M. and Shlayeva, N.P. (2009) Raw materials effect of structure and mineralogical features of silica raw material on phase changes during heating. Refractories and Industrial Ceramics, 50, 1822.CrossRefGoogle Scholar
Vichaphund, S., Kitiwan, M., Atong, D. and Thavorniti, P. (2011) Microwave synthesis of wollastonite powder from eggshells. Journal of the European Ceramic Society, 31, 24352440.CrossRefGoogle Scholar
Villegas, M.A. and Fernandez Navarro, J.M. (1988) Preparacion y caracterizacion de vidrios del sistema CaO-SiO2 por el procedimiento sol-gel, Boletín de la Sociedad Española de Cerámica y Vidrio, 27, 349357.Google Scholar
Welch, J.H. and Gutt, W. (1959) Tricalcium silicate and its stability within the system CaO–SiO2. Journal of the American Ceramic Society, 42, 1115.CrossRefGoogle Scholar
Yamanaka, B.T. and Mori, H. (1981) The structure and polytypes of α-CaSiO3 (pseudowollastonite). Acta Crystallographica, 37, 10101017.CrossRefGoogle Scholar