Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:25:52.175Z Has data issue: false hasContentIssue false

Svetlanaite, SnSe, a new mineral from the Ozernovskoe deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  17 February 2022

Victor M. Okrugin
Affiliation:
Institute of Volcanology and Seismology, Russian Academy of Science, Petropavlovsk-Kamchatsky, 683006, Russia
Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague, Czech Republic
Vladimir V. Kozlov
Affiliation:
Oxford Instruments (Moscow Office), 26, Denisovskii Pereulok, Moscow, 105005, Russia
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague, Czech Republic
Chris J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
Ilya A. Shkilev
Affiliation:
JSC “Siberian Mining and Metallurgical Alliance”, Mishennaya 106, Petropavlovsk-Kamchatsky, Kamchatka Territory, 683016, Russia
*
*Author for correspondence: Anna Vymazalová, Email: [email protected]

Abstract

Svetlanaite, SnSe is a new mineral discovered from the high-sulfidation epithermal Au-deposit Ozernovskoe, Kamchatka peninsula, Russia. It forms tiny euhedral spindles (0.5–2 μm × 10–15 μm) in quartz, in close association with cassiterite, rutile, mohite, mawsonite, kiddcreekite, hemusite, tellurium, kostovite and Se-bearing ‘fahlores’ (Se-goldfieldite–Se(Bi)-tetrahedrite–Se-tennantite). In plane-polarised light, svetlanaite is light-grey, pleochroic from white to cream and strongly anisotropic in shades of light blue, dark blue, khaki and orange–brown; it exhibits no internal reflections. Reflectance values of synthetic analogue of svetlanaite in air (R1,R2 in %) are: 50.9, 56.5 at 470 nm, 50.2, 56.7 at 546 nm, 49.5, 55.3 at 589 nm and 48.7, 53.4 at 650 nm. Twelve electron-microprobe analyses of svetlanaite give an average composition: Sn 61.30, Se 37.22 and S 1.25 total 99.79 wt.%, corresponding to the empirical formula Sn1.01(Se0.92S0.07)Σ0.99 based on 2 atoms; the average of seven analyses on its synthetic analogue is: Sn 59.98 and Se 39.71, total 99.59 wt.%, corresponding to Sn1.00Se1.00. The density, calculated on the basis of the empirical formula, is 6.08 g/cm3. The mineral is orthorhombic, space group Pnma, with a = 11.500(2), b = 4.154(2), c = 4.445(2) Å, V = 212.34(14) Å3 and Z = 4. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic SnSe. It crystallises in the GeS-structure type. It is isostructural with the mineral herzenbergite (SnS). The mineral name is in honour of Svetlana K. Smirnova, a Russian mineralogist, for her contributions to geology in the epithermal Au–Ag deposits of the Tien–Shan region.

Type
Article
Copyright
Copyright © Czech Geological Survey, Oxford Instruments, Natural History Museum, JSC Siberian Mining and Metallurgical Alliance, and Institute of Volcanology and Seismology, Russian Academy of Science, 2022. Published by Cambridge University Press on behalf of the Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Elena Zhitova

References

Bruker AXS (2014) Topas 5, Computing Program. Bruker AXS Gmbh, Karlrsuhe, Germany.Google Scholar
Chattopadhyay, T., Pannetier, J. and von Schnering, H.G. (1986) Neutron diffraction study of the structural phase transition in SnS and SnSe. Journal of Physics and Chemistry of Solids, 47, 879885.10.1016/0022-3697(86)90059-4CrossRefGoogle Scholar
Demin, A.G. (2015) Ozernovskoye field as a new promising ore object of Central Kamchatka with complex ores for gold, tungsten, silver and copper. Zoloto i tekhnologii, 1, 12 [in Russian].Google Scholar
Karlsruhe, FIZ (2020) Inorganic Crystal Structure Database (ICSD). FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany [https://icsd.products.fiz-karlsruhe.de/].Google Scholar
Kovalenker, V.A. and Plotinskaya, O.Y. (2005) Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposits, Kuril–Kamchatka volcanic belt. Geochemistry, Mineralogy and Petrology (Sofia), 43, 118124.Google Scholar
Litvinov, A.F., Patoka, M.G. and Markovsky, B.A. (editors) (1999) Map of Mineral Resources of Kamchatka Region, Explanatory Memorandum and Legend. St. Petersburg, Ministry of Natural Resources of the Russian Federation, Natural Resources Committee of Kamchatka Region and Koryak Autonomous Area, VSEGEI, 1 map on 18 sheets, scale 1:500,000, 563 pp. [in Russian and English].Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie, 63, 4589.Google Scholar
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Pp. 7125 in: Sulfide Mineralogy and Geochemistry (Vaughan, D.J., editor). Reviews in Mineralogy and Geochemistry, 61. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.10.1515/9781501509490-003CrossRefGoogle Scholar
Naumova, O.A. (1995) Hydrothermally Altered Rocks of Gold-Silver Deposits of Central and Southern Kamchatka. Cand. Sci. (Geol.-Mineral.) Dissertation, TsNIGRI [Central Research Institute of geological prospecting for base and precious metals], Moscow.Google Scholar
Okrugin, V.M., Vymazalová, A., Kozlov, V.V., Laufek, F., Stanley, C.J. and Shkilsky, I. (2020) Svetlanaite, IMA 2020-013. CNMNC Newsletter No. 56 . Mineralogical Magazine, 84, 623627.Google Scholar
Palatnik, L.S. and Levitin, V.V. (1954) X-ray investigation of alloys Sn–Se, Zn–Se, Cd–Se and Ag–Se, Doklady Akademii Nauk SSSR, 96, 975978.Google Scholar
Petrenko, I.D. (1999) Gold-silver Formation of Kamchatka. VSEGEI (Geological Research Institute), St. Petersburg, 115 pp. [in Russian].Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.10.1007/978-1-4899-2617-3_4CrossRefGoogle Scholar
Sist, M., Zhang, J. and Brummerstedt Iversen, B. (2016) Crystal structure and phase transition of thermoelectric SnSe. Acta Crystallographica, B72, 310–6.Google Scholar
Spiridonov, E.M., Ignatov, A.I. and Shubina, E.V. (1990) The evolution of fahlores from the Ozernovskoe volcanogenic deposit (Kamchatka). Izvestia Academy of Sciences USSR, Geology series, 9, 8294 [in Russian].Google Scholar
Strunz, H. and Nickel, E.H. (2001) Class 2. SULFIDES and SULFOSALTS. Pp. 56147 in: Strunz Mineralogical Tables 9th Edition. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, Germany.Google Scholar
Vakin, M.E. and Naumova, O.A. (1994) Geological structural position and frameworks of localization of bonanza ores at the Ozernovskoe gold-silver deposit (Kamchatka). Rudy i Metally, 2, 97104 [in Russian].Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.10.1180/mgm.2021.43CrossRefGoogle Scholar
Wiedemeier, H. and Csillag, H.J. (1979) The thermal expansion and high temperature transformation of SnS and SnSe. Zeitschrift für Kristallographie, 148, 1729.Google Scholar
Wiedemeier, H. and von Schnering, H.G. (1978) Refinement of the structures of GeS, GeSe, SnS and SnSe. Zeitschrift für Kristallographie, 148, 295303.CrossRefGoogle Scholar
Zachariasen, W.H. (1932) The crystal lattice of germano sulphide, GeS. Physical Reviews, 40, 917922.10.1103/PhysRev.40.917CrossRefGoogle Scholar
Supplementary material: File

Okrugin et al. supplementary material

Okrugin et al. supplementary material

Download Okrugin et al. supplementary material(File)
File 6.2 KB