Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T23:24:15.571Z Has data issue: false hasContentIssue false

Sustaining Earth: Thoughts on the present and future roles of mineralogy in environmental science

Published online by Cambridge University Press:  05 July 2018

M. F. Hochella Jr.*
Affiliation:
NanoGeoscience and Technology Laboratory, Department of Geological Sciences, 4044 Derring Hall, Virginia Tech, Blacksburg, VA 24061-0420, USA
*

Abstract

Sustaining Earth, in the face of both technology thrusts and population dynamics, depends on our ability to maintain a delicate balance between human-promoted planetary modification and decline thresholds for land (soils), water, atmosphere, and biological systems. Mineralogy, as much as any other single science, will be central to this process. A set of links between Earth sustainability issues and the science of mineralogy are formulated and discussed in this discourse. The strongest ties exist in the areas of mineral-water and mineral-atmosphere interactions. Minerals are also particularly important in human disease generation. In addition, due to the role of minerals as invaluable economic resources, the environmental consequences of mining also come into play. New subdisciplines have recently emerged to bring mineralogy even closer to Earth sustainability issues, particularly mineral-microbe interaction science and nanomineralogy

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N. and Blowes, D.W., editors (1994) Environmental Geochemistry of Sulfide Oxidation. ACS Symposium Series 550, American Chemical Society, Washington, D.C.Google Scholar
Amacher, M.C. and Baker, D.A. (1982) Redox Reactions involving Chromium, Plutonium and Manganese in Soils. Institute for Research on Land and Water Resources, Pennsylvania State University.Google Scholar
Anastasio, C. and Martin, S.T. (2001) Atmospheric nanoparticles. Pp. 293349 in: Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Atlas, R.M. and Bartha, R. (1998) Microbial Ecology. Benjamin/Cummings.Google Scholar
Banerjee, D. and Nesbitt, H.W. (1999) Oxidation of aqueous Cr(III) at birnessite surfaces: Constraints on reaction mechanism. Geochimica et Cosmochimica Acta, 63, 1671-87.CrossRefGoogle Scholar
Banfield, J.F. and Navrotsky, A., editors (2001) Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Banfield, J.F. and Nealson, K.H., editors (1997) Geomicrobiology: Interactions Between Microbes and Minerals. Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Banfield, J.F. and Zhang, H. (2001) Nanoparticles in the environment. Pp. 158 in: Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. and Penn, R.L. (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751754.CrossRefGoogle ScholarPubMed
Barns, S.M. and Nierzwicki-Bauer, S.A. (1997) Microbial diversity in ocean, surface and subsurface environments. Pp. 3579 in: Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Becker, U., Rosso, K.M. and Hochella, M.F. Jr. (2001) The proximity effect on semiconducting mineral surfaces: A new aspect of mineral surface reactivity and surface complexation theory. Geochimica et Cosmochimica Acta, 65, 26412649.CrossRefGoogle Scholar
Bennett, P.C., Hiebert, F.K. and Choi, W.J. (1996) Microbial colonization and weathering of silicates in petroleum-contaminated groundwater. Chemical Geology, 132, 4553.CrossRefGoogle Scholar
Bennett, P.C., Rogers, J.R., Hiebert, F.K. and Choi, W.J. (2001) Mineralogy, mineral weathering, and microbial ecology. Geomicrobiology Journal, 18, 319.Google Scholar
Betzer, P., Carder, K., Duce, R., Merrill, J., Tindale, N., Uematsu, M., Costello, D., Young, R., Feely, R., Breland, J., Bernstein, R. and Greco, A. (1988) Long distance transport of giant mineral aerosol grains. Nature, 336, 568-71.CrossRefGoogle Scholar
Beveridge, T.J., Pouwels, P.H., Sara, M., Kotiranta, A., Lounatmaa, K., Kari, K., Kerosuo, E., Haapasalo, M., Egelseer, E.M., Schocher, I., Sleytr, U.B., Morelli, L., Callegari, M.L., Nomellini, J.F., Bingle, W.H., Smit, J., Leibovitz, E., Lemaire, M., Miras, I., Salamitou, S., Beguin, P., Ohayon, H., Gounon, P., Matuschek, M. and Koval, S.F. (1997) Functions of S-layers. FEMS Microbiology Reviews, 20, 99149.CrossRefGoogle ScholarPubMed
Bigham, J.M., Carlson, L. and Murad, E. (1994) Schwertmannite, a new iron oxyhydroxy-sulfate from Pyhäsalmi, Finland, and other localities. Mineralogical Magazine, 58, 641648.CrossRefGoogle Scholar
Blowes, D.W., Ptacek, C.J. and Jambor, J.L. (1997) Insitu remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science Technology, 31, 33483357.CrossRefGoogle Scholar
Boeckx, R.L. (1986) Lead poisioning in children. Analytical Chemistry, 58, 274A287A.CrossRefGoogle Scholar
Bond, P.L., Smriga, S.P. and Banfield, J.F. (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied Environmental Microbiology, 66, 38423849.CrossRefGoogle ScholarPubMed
Borensen, C., Kirchner, U., Scheer, V., Vogt, R. and Zellner, R. (2000) Mechanism and kinetics of the reactions of NO2 or HNO3 with alumina as a mineral dust model compound. Journal of Physical Chemistry A, 104, 50365045.CrossRefGoogle Scholar
Brady, N.C. and Weil, R.R. (1999) The Nature and Properties of Soils. Prentice Hall, New Jersey.Google Scholar
Brown, G.E. Jr. (2001) How minerals react with water. Science, 294, 6770.CrossRefGoogle ScholarPubMed
Brown, L.R. (2000) Challenges of the New Century. Pp. 321 in: State of the World 2000. Worldwatch Institute, W.W. Norton & Company, New York.Google Scholar
Brown, L.R., Renner, M. and Halwell, B. (2000) Vital Signs 2000: The Environmental Trends That are Shaping our Future. Worldwatch Institute. W.W. Norton & Company, New York.Google Scholar
Buseck, P.R., editor (1992) Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. Reviews in Mineralogy, 27. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Buseck, P.R. and Pósfai, M. (1999) Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Science, 96, 33723379.CrossRefGoogle ScholarPubMed
Buseck, P.R., Jacob, D.J., Pósfai, M., Li, J. and Anderson, J.R. (2000) Minerals in the air: An environmental perspective. International Geology Review, 42, 577593.CrossRefGoogle Scholar
Chao, C.-C., Lund, L.G., Zinn, K.R. and Aust, A.E. (1994) Iron mobilization from crocidolite asbestos by human lung carcinoma cell. Archives in Biochemistry and Biophysics, 314, 384391.CrossRefGoogle Scholar
Chung, J.-B. (1998) Chromium speciation in Cr(III) oxidation by Mn-oxides: Relation to the oxidation mechanism. Han'guk Nonghwa Hakhoechi, 41, 8994.Google Scholar
Churg, A. (1993) Asbestos lung burden and disease patterns in man. Pp. 409426 in: Health Effects of Mineral Dust (Guthrie, G.D. and Mossmann, B.T., editors). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Cotter-Howells, J.D. and Paterson, E. (2000) Minerals and soil development. Pp. 91124 in: Environmental Mineralogy (Vaughan, D.J. and Wogelius, R.A., editors). EMU Notes in Mineralogy, 2, Eötvös University Press, Budapest.Google Scholar
Craig, J.R., Vaughan, D.J. and Skinner, B.J. (2001) Resources of the Earth (3rd Edition). Prentice Hall, New Jersey.Google Scholar
Crowley, T.J. (2000) Causes of climate change over the past 1000 years. Science, 289, 270277.CrossRefGoogle ScholarPubMed
Da Rosa, C.D. (1997) Water pollution from mining: An international view. Pp. 219238 in: Golden Dreams, Poisoned Streams. Mineral Policy Center, Washington, D.C.Google Scholar
Da Rosa, C.D. and Lyon, J.S. (1997) We know how to stop mining pollution. Pp. 93122 in: Golden Dreams, Poisoned Streams. Mineral Policy Center, Washington, D.C.Google Scholar
Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. Pp. 177260 in: Mineral-Water Interface Geochemistry (Hochella, M.F. Jr. and White, J.F., editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J. and Crutzen, P.J. (1996) Role of mineral aerosol as a reactive surface in the global atmosphere. Journal of Geophysical Research, 101, 2286922889.CrossRefGoogle Scholar
de Reus, M., Dentener, F., Thomas, A., Borrmann, S., Strom, J. and Lelieveld, J. (2000) Airborne observation s of dust aerosol over the North Atlantic ocean during ACE 2: Indications for heteroge neous ozone destruct ion. Journal of Geophysical Research, 105, 1526315275.CrossRefGoogle Scholar
Desmond, A. (1965) How many people have ever lived on Earth? Pp. 2038 in: The Population Crisis: Implications and Plans for Action. Indiana University Press, Bloomington, Indiana, USA.Google Scholar
Duce, R.A. (1995) Sources, distribution, and fluxes of mineral aerosols and their relationship to climate. Pp. 4372 in: Aerosol Forcing of Climate (Charlson, R.J. and Heintzenberg, J., editors). Wiley, New York.Google Scholar
Eary, L.E. and Rai, D. (1987) Kinetics of chromium (III) oxidation to chromium (VI) by reaction with manganese oxide. Environmental Science Technology, 26, 7985.Google Scholar
Edwards, K.J., Bond, P.L., Gihring, T.M. and Banfield, J.F. (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 17961799.CrossRefGoogle ScholarPubMed
Ehrlich, H.L. (1996) Geomicrobiology. Marcel Dekker, New York.Google Scholar
Environmental Protection Agency (1985) Wastes from the extraction and beneficiation of metallic ores, phosphate rock, asbestos, overburden from uranium mining, and oil shale. Report to US Congress, 31 December, 1985, pp. 449.Google Scholar
Environmental Protection Agency (1998) Drinking Water and Health: National Primary Drinking Water Regulations, v. 1999. Office of Ground Water and Drinking Water.Google Scholar
Fendorf, S.E. and Zasoski, R.J. (1992) Chromium (III) oxidation by MnO2: Characterization. Environmental Science and Technology, 21, 11871193.Google Scholar
Fendorf, S.E., Fendorf, M., Sparks, D.L. and Gronsky, R. (1992) Inhibitory mechanisms of chromium(III) oxidation by manganese dioxide. Journal of Colloid and Interface Science, 153, 3754.CrossRefGoogle Scholar
Fendorf, S.E., Zasoski, R.J. and Burau, R.G. (1993) Competing metal ion influences on chromium (III) oxidation by birnessite. Soil Science Society of America Journal, 57, 15081515.CrossRefGoogle Scholar
Fenter, F.F., Caloz, F. and Rossi, M.J. (1995) Experimental evidence for the efficient dry deposition of nitric-acid on calcite. Atmospheric Environment, 29, 33653372.CrossRefGoogle Scholar
Fortin, D. and Beveridge, T.J. (1997) Role of the bacterium, Thiobacillus, in the formation of silicates in acidic mine tailings. Chemical Geology, 141, 235250.CrossRefGoogle Scholar
Fortin, D., Ferris, F.G. and Beveridge, T.J. (1997) Surface-mediated mineral development by bacteria. Pp. 3579 in: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.Google Scholar
Fredrickson, J.K., McKinley, J.P., Nierzwicki-Bauer, S.A., White, D.C., Ringelberg, D.B., Rawson, S.A., Shu-Mei, L., Brockman, F.J. and Bjornstad, B.N. (1995) Microbial community structure and biogeochemistry of Miocene subsurface sediments: Implications for long-term microbial survival. Molecular Ecology, 4, 619626.CrossRefGoogle Scholar
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W. and Li, S.M. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62, 32393257.CrossRefGoogle Scholar
Fubini, B. (1994) Which surface functionalities are implied in dust toxicity. Pp. 347358 in: Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres (Davis, J.M.G. and Jaurand, M.-C., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Fubini, B., Barcelo, F. and Arean, C.O. (1997) Ferritin adsorption on amosite fibers: Possible implications in the formation and toxicity of asbestos bodies. Journal of Toxicology and Environmental Health, 52, 343352.CrossRefGoogle ScholarPubMed
Goodman, A.L., Underwood, G.M. and Grassian, V.H. (2000) A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles. Journal of Geophysical Research, 105, 2905329064.CrossRefGoogle Scholar
Grantham, M.C., Dove, P.M. and DiChristina, T.J. (1997) Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings. Geochimica et Cosmochimica Acta, 61, 44674477.CrossRefGoogle Scholar
Hanisch, F. and Crowley, J.N. (2001) Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: A Knudson cell study. Journal of Physical Chemistry A, 105, 30963106.CrossRefGoogle Scholar
Hem, J.D. (1981) Rates of manganese oxidation in aqueous systems. Geochimica et Cosmochimica Acta, 45, 13691374.CrossRefGoogle Scholar
Hem, J.D., Lind, C.J. and Roberson, C.E. (1989) Coprecipitation and redox reactions of manganese oxides with copper and nickel. Geochimica et Cosmochimica Acta, 53, 28112822.CrossRefGoogle Scholar
Hem, J.D., Roberson, C.E. and Fournier, R.B. (1982) Stability of β-MnOOH and manganese oxide deposition from springwater. Water Resources Research, 18, 563570.CrossRefGoogle Scholar
Hersman, L., Lloyd, T. and Sposito, G. (1995) Siderophore-promoted dissolution of hematite. Geochimica et Cosmochimica Acta, 59, 33273330.CrossRefGoogle Scholar
Hochella, M.F. Jr. (1990) Atomic structure, microtopography, composition, and reactivity of mineral surfaces. Pp. 87132 in: Mineral-Water Interface Geochemistry (Hochella, M.F. Jr. and White, A.F., editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Hochella, M.F. Jr. (1993) Surface chemistry, structure, and reactivity of hazardous mineral dust. Pp. 275308 in: Health Effects of Mineral Dust (Guthrie, G.D. and Mossman, B.T., editor). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Hochella, M.F. Jr. (2002 a) There's plenty of room at the bottom: Nanoscience in geochemistry. Geochimica et Cosmochimica Acta, 66, 735743.CrossRefGoogle Scholar
Hochella, M.F. Jr. (2002 b) Nanoscience and technology: The next revolution in the Earth and environmental sciences. Earth and Planetary Science Letters, in press.CrossRefGoogle Scholar
Hochella, M.F. Jr. and Banfield, J.F. (1995) Chemical weathering of silicates in nature: A microscopic perspective with theoretical considerations. Pp. 353406 in: Chemical Weathering Rates of Silicate Minerals (White, A.F. and Brantley, S.L., editors). Reviews in Mineralogy, 31. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Hochella, M.F. Jr. and White, A.F. (1990) Mineral-water interface geochemistry: An overview. Pp. 116 in: Mineral-Water Interface Geochemistry (Hochella, M.F. Jr. and White, A.L., editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Hochella, M.F. Jr., Moore, J.N., Golla, U. and Putnis, A. (1999) A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport. Geochimica et Cosmochimica Acta, 63, 33953406.CrossRefGoogle Scholar
IPCC (International Panel on Climate Change) (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.Google Scholar
Jambor, J.L. (1994) Mineralogy of sulfide-rich tailings and their oxidation products. Pp. 59102 in: Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes (Jambor, J.L. and Blowes, D.W., editors). Mineralogical Association of Canada.Google Scholar
Jambor, J.L. and Blowes, D.W., editors (1994) Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes. Mineralogical Association of Canada.Google Scholar
Jambor, J.L., Blowes, D.W. and Ptacek, C.J. (2000) Mineralogy of mine wastes and strategies for remediation. Pp. 255284 in: Environmental Mineralogy (Vaughan, D.J. and Wogelius, R.A., editors). EMU Notes in Mineralogy, 2, Eötvös University Press, Budapest.Google Scholar
Janney, D.E., Cowley, J.M. and Buseck, P.R. (2001) Structure of synthetic 6-line ferrihydrite by electron nanodiffraction. American Mineralogist, 86, 327335.CrossRefGoogle Scholar
Jardine, P.M., Fendorf, S.E., Mayes, M.A., Larsen, I.L., Brooks, S.C. and Bailey, W.B. (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science Technology, 33, 29392944.CrossRefGoogle Scholar
Johnson, C.A. and Xyla, A.G. (1991) The oxidation of chromium(III) to chromium(VI) on the surface of manganite (MnOOH). Geochimica et Cosmochimica Acta, 55, 28612866.CrossRefGoogle Scholar
Junta, J.L. and Hochella, M.F. Jr. (1994) Manganese(II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochimica et Cosmochimica Acta, 58, 49854999.CrossRefGoogle Scholar
Kaim, W. (1994) Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. John Wiley & Sons, New York.Google Scholar
Kavanaugh, M.C. (1994) Alternative for Groundwater Cleanup. National Academy Press, USA.Google Scholar
Keller, E.A. (2000) Environmental Geology (8th Edition). Prentice Hall, New Jersey.Google Scholar
Klein, R.G. (1989) The Human Career: Human Biological and Cultural Origins. University of Chicago Press, Chicago, USA.Google Scholar
Klein, C. (1993) Rocks, minerals, and a dusty world. Pp. 759 in: Health Effects of Mineral Dust (Guthrie, G.D. and Mossman, B.T., editors). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kraemer, S.M., Cheah, S.F., Zapf, R., Xu, J.D., Raymond, K.N. and Sposito, G. (1999) Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochimica et Cosmochimica Acta, 63, 30033008.CrossRefGoogle Scholar
Liermann, L.J., Kalinowski, B.E., Brantley, S.L. and Ferry, J.G. (2000) Role of bacterial siderophores in dis solution of hornblende. Geochimica et Cosmochimica Acta, 64, 587602.CrossRefGoogle Scholar
Lind, C.J. (1988) Hausmannite (Mn3O4) conversion to manganite (MnOOH) in dilute oxalate solution. Environmental Science and Technology, 22, 6270.CrossRefGoogle ScholarPubMed
Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology Review, 55, 259-87.CrossRefGoogle ScholarPubMed
Lower, S., Hochella, M.F. Jr. and Beveridge, T.J. (2001 a) Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and α–FeOOH. Science, 292, 13601363.CrossRefGoogle ScholarPubMed
Lower, S.K., Hochella, M.F. Jr., Banfield, J. and Rosso, K.M. (2001 b) Nanogeoscience: From the movement of electrons to lithospheric plates. Eos Transactions, American Geophysical Union, 83, 5356.CrossRefGoogle Scholar
Lowndes, D.H., editor (2000) Nanoscale Science, Engineering and Technology Research Directions. Oak Ridge National Laboratory, Oak Ridge, TN, USA.Google Scholar
Malati, M.A. and Rophael, M.W. (1999) Radiochemical and physicochemical characterization of manganese oxides. Surface Science, 433, 740744.CrossRefGoogle Scholar
Manceau, A. and Charlet, L. (1992) X-ray absorption spectroscopy study of the sorption of Cr(III) at the oxide-water interface I. Molecular mechanisms of Cr(III) oxidation on Mn oxides. Journal of Colloid and Interface Science, 148, 425442.CrossRefGoogle Scholar
Maurice, P.A., Hochella, M.F., Parks, G.A., Sposito, G. and Schwertmann, U. (1995) Evolution of hematite surface microtopography upon dissolution by simple organic-acids. Clays and Clay Minerals, 43, 2938.CrossRefGoogle Scholar
McBride, M.B. (1994) Environmental Chemistry of Soils. Oxford University Press, Oxford, UK.Google Scholar
McCarty, D.K., Moore, J.N. and Marcus, W.A. (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate: Comparison of selective extractions. Applied Geochemistry, 13, 165176.CrossRefGoogle Scholar
McKenzie, R.M. (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 6173.CrossRefGoogle Scholar
Means, J.L., Crerar, D.A., Borcsik, M.P. and Duguid, J.O. (1978) Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments. Geochimica et Cosmochimica Acta, 42, 17631773.CrossRefGoogle Scholar
Miller, R.L. and Tegen, I. (1998) Climate response to soil dust aerosols. Journal of Climate, 11, 32473267.2.0.CO;2>CrossRefGoogle Scholar
Mogk, D.W. and Mathez, E.A. (2000) Carbonaceous films in midcrustal rocks from the KTB borehole, Germany, as characterized by time-of-flight secondary ion mass spectrometry. Geochemistry, Geophysics, and Geosystems, 1, AGU electronic journal, paper number 2000GC000081.CrossRefGoogle Scholar
Murray, D.J., Healy, T.W. and Fuerstenau, D.W. (1968) The adsorption of aqueous metal on colloidal hydrous manganese oxide. Pp. 7487 in: Adsorption from Aqueous Solution, 79. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
Murray, J.W., Dillard, J.G., Giovanoli, R., Moers, H. and Stumm, W. (1985) Oxidation of Mn(II): Initial mineralogy, oxidation state and aging. Geochimica et Cosmochimica Acta, 49, 463470.CrossRefGoogle Scholar
Navrotsky, A. (2001) Thermochemistry of nanomaterials. Pp. 73103 in: Nanoparti cles and the Environment (Banfield, J.F. and Navrotsky, A., editors). Reviews in Mineralogy and Geochemistry, 44. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Nealson, K.H. and Saffarini, D. (1994) Iron and manganese in anaerobic respiration: Enviromental significance, physiology, and regulation. Annual Reviews in Microbiology, 48, 311343.CrossRefGoogle Scholar
Nico, P.S. and Zasoski, R.J. (2000) Importance of Mn(III) availability on the rate of Cr(III) oxidation on MnO2 . Environmental Science and Technology, 34, 33633367.CrossRefGoogle Scholar
Nolan, R.P., Langer, A.M. and Herson, G.B. (1991) Characterisation of palygorskite specimens from different geological locales for health hazard evaluation. British Journal of Industrial Medicine, 48, 463475.Google ScholarPubMed
Nordstrom, D.K. and Southham, G. (1997) Geomicrobiology of sulfide mineral oxidation. Pp. 361390 in: Geomicrobiology: Interactions between Minerals and Microbes (Banfield, J.F. nad Nealson, K.H., editors). Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Nriagu, J.O. (1978) Lead in soils, sediments and major rock types. Pp. 1672 in: The Biogeochemistry of Lead in the Environment: Ecological Cycles, 1 (Nriago, J.O., editor). Elsevier/North-Holland Biomedical Press.Google Scholar
Nriagu, J.O., Nieboer, E., editors (1988) Chromium in the Natural and Human Environments. Advances in Environmental Science and Technology, 20. Wiley-Interscience, New York.Google Scholar
O'Dowd, C.D., Smith, M.H., Consterdine, I.E. and Lowe, J.A. (1997) Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmospheric Environment, 31, 7380.CrossRefGoogle Scholar
O'Reilly, E.S. and Hochella, M.F. Jr. (2002) Pb sorption efficiencies on natural and synthetic Mn and Fe-oxides: A new look at an old problem. Abstracts, 223rd American Chemical Society National Meeting, Orlando, Florida (April 7–11, 2002).Google Scholar
Palekar, L.D., Spooner, C.M. and Coffin, D.L. (1979) Influence of crystallization habit of minerals on in vitro cytotoxicity. Annals of the New York Academy of Science, 330, 673686.CrossRefGoogle ScholarPubMed
Paul, E.A. and Clark, F.E. (1996) Soil Microbiology and Biochemistry. Academic Press, New York.Google Scholar
Pentecost, A. and Bauld, J. (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiology, 6, 129135.CrossRefGoogle Scholar
Peterson, M.L., Brown, G.E. Jr., Parks, G.A. and Stein, C.L. (1997) Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results. Geochimica et Cosmochimica Acta, 61, 33993412.CrossRefGoogle Scholar
Péwé, T.R. (1981) Desert dust: An overview. Pp. 110 in: Desert Dust: Origin, Characterization, and Effects on Man. Geological Society of America Special Paper, 186.CrossRefGoogle Scholar
Pósfai, M. and Molnár, A. (2000) Aerosol particles in the troposphere: A mineralogical introduction. Pp. 197252 in: Environmental Mineralogy (Vaughan, D.J. and Wogelius, R.A., editors). EMU Notes in Mineralogy, 2. Eötvös University Press, BudapestGoogle Scholar
Pósfai, M., Buseck, P.R., Bazylinski, D.A. and Frankel, R.B. (1998) Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist, 83, 14691481.CrossRefGoogle Scholar
Postel, S. (1999) Pillar of Sand. Norton and Co., New York.Google Scholar
Powell, R.M., Puls, R.W., Hightower, S.K. and Sabatini, D.A. (1995) Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Environmental Science and Technology, 29, 19131922.CrossRefGoogle ScholarPubMed
Pratt, A.R., Blowes, D.W. and Ptacek, C.J. (1997) Products of chromate reduction on proposed subsurface remediation material. Environmental Science and Technology, 31, 24922498.CrossRefGoogle Scholar
Prospero, J.M. (1999 a) Long-range transport of mineral dust in the global atmosphere: Impact on African dust on the environment of the southeastern United States. Proceedings of the National Academy of Science, 96, 33963403.CrossRefGoogle ScholarPubMed
Prospero, J.M. (1999 b) Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. Journal of Geophysical Research, 104, 1591715927.CrossRefGoogle Scholar
Prospero, J.M. (2001) African Dust in America. Geotimes, 46(11), 2427.Google Scholar
Robertson, A.M. (1987) Alternative acid mine drainage abatement measures. In: Proceedings of the 11th Annual British Columbia Mine Land Reclamation Conference, Campbell River, British Columbia.Google Scholar
Roco, M.C., editor (1999) Nanotechnology: Shaping the World Atom by Atom. National Science and Technology Council, The Interagency Working Group on Nanoscience, Engineering, and Technology, Washington, D.C.Google Scholar
Roco, M.C., Williams, S. and Alivisatos, P., editors (2000) Nanotechnology Research Directions: IWGN Workshop Report. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Rogers, J.R., Bennett, P.C. and Choi, W.J. (1998) Feldspars as a source of nutrients for microorganisms. American Mineralogist, 83, 15321540.CrossRefGoogle Scholar
Ross, M. (1999) The health effects of mineral dusts. Pp. 339-56 in: The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, 6A. Society of Economic Geologists, Tulsa, Oklahoma, USA.Google Scholar
Ross, M., Nolan, R.P., Langer, A.M. and Cooper, W.C. (1993) Health effects of mineral dusts other than asbestos. Pp. 361407 in: Health Effects of Mineral Dust (Guthrie, G.D. and Mossman, B.T., editors). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Ryker, S.J. (2001) Mapping arsenic in groundwater: A real need, but a hard problem. Geotimes, 46(11), 3436.Google Scholar
Schwertmann, U. and Taylor, R.M. (1989) Iron Oxides. Pp. 379438 in: Minerals in Soil Environments, 1 (Dixon, J.B. and Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Schwertmann, U., Bigham, J.M. and Murad, E. (1995) The first occurrence of schwertmannite in a natural stream environment. European Journal of Mineralogy, 7, 547552.CrossRefGoogle Scholar
Seinfeld, J.H. and Pandis, S.N. (1998) Atmospheric Chemistry and Physics. Wiley, New York.Google Scholar
Sheridan, D. (1981) Desertification of the United States. Council on Environmental Quality, Washington, D.C.Google Scholar
Shinn, E.A., Smith, G.W., Prospero, J.M., Betzer, P., Hayes, M.L., Garrison, V. and Barber, R.T. (2000) African dust and the demise of Carribean coral reefs. Geophysical Research Letters, 27, 30293032.CrossRefGoogle Scholar
Skinner, H.C.W. (2000) Minerals and human health. (Vaughan, D.J. and Wogelius, R.A., editors). Pp. 383412 in: Environmental Mineralogy. EMU Notes in Mineralogy, 2. Eötvös University Press, Budapest.Google Scholar
Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M. and Kent, E. (1977) Carcinogenicity of. brous glass: Pleural response in the rat in relation to fiber dimension. Journal of the National Cancer Institute, 58, 587603.CrossRefGoogle Scholar
Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E. and Smith, A. (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. Journal of the National Cancer Institute, 67, 965975.Google ScholarPubMed
Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, and Reactions. John Wiley & Sons, New York.Google Scholar
Stone, A.T. (1997) Reactions of extracellular organic ligands with dissolved metal ions and mineral surfa ce. Pp. 309-41 in: Geomicrobiology: Interactions Between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Tadanier, C.J., Little, J.C., Berry, D.F. and Hochella, M.F. Jr. (2002) Microbial Acquisition of Nutrients from Mineral Surfaces. Pp. 339364 in: Water-Rock Interactions, Environmental Geochemistry, and Ore Deposits. A Tribute to David A. Crerar. Geochemical Society Special Publication, Geochemical Society, St. Louis, USA.Google Scholar
Tadros, Th.F. and Gregory, J., editors (1993) Colloids in the Aquatic Environment. Elsevier Applied Science, Amsterdam.Google Scholar
Tingle, T.N., Mathez, E.A. and Hochella, M.F. Jr. (1991) Carbonaceous matter in peridotites and basalt studied by XPS, SALI, and LEED. Geochimica et Cosmochimica Acta, 55, 13451352.CrossRefGoogle Scholar
Vendetti, J. (2001 a) Asbestos. Geotimes, 46(11), 2829.Google Scholar
Vendetti, J. (2001 b) Asbestos in Libby, Montana. Geotimes, 46(11), 29.Google Scholar
Vu, V.T. (1993) Regulatory approaches to reduce human health risks associated with exposures to mineral fibers. Pp. 545-54 in: Health Effects of Mineral Dust (Guthrie, G.D. and Mossman, B.T., editors). Reviews in Mineralogy, 28. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Wang, N.S., Jaurand, M.C., Magne, L., Kheuang, L., Pinchon, M.C. and Bignon, J. (1987) The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture: A scanning and transmission electron microscopic study. American Journal of Pathology, 126, 343349.Google ScholarPubMed
Weaver, R. and Hochella, M.F. Jr. (2002) Dynamic processes occurring at the Cr3+ aq-manganite interface: Simultaneous adsorption, microprecipitation, oxidation/reduction and dissolution. Geochimica et Cosmochimica Acta, in press.CrossRefGoogle Scholar
Webster, J.G., Swedlund, R.J. and Webster, K.S. (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environmental Science and Technology, 32, 13611368.CrossRefGoogle Scholar
Welch, S.A. and Vandevivere, P. (1994) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiology Journal, 12, 227238.CrossRefGoogle Scholar
Welch, S.A., Barker, W.W. and Banfield, J.F. (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica Acta, 63, 14051419.CrossRefGoogle Scholar
Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J. and Caldwell, D.E. (1994) Multicellular organization in a degradative biofilm community. Applied Environmental Microbiology, 60, 434446.CrossRefGoogle Scholar
Yee, N., Fein, J.B. and Daughney, C.J. (2000) Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta, 64, 609617.CrossRefGoogle Scholar
Zhang, Y. and Carmichael, G.R. (1999) The role of mineral aerosol in tropospheric chemistry in East Asia – A model study. Journal of Applied Meteorology, 38, 353366.2.0.CO;2>CrossRefGoogle Scholar
Zhuang, G., Yi, Z., Duce, R.A. and Brown, P.R. (1992) Link between iron and sulfur cycles suggested by detection of Fe(II) in remote marine aerosols. Nature, 355, 537539.CrossRefGoogle Scholar