Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T20:24:14.740Z Has data issue: false hasContentIssue false

The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series

Published online by Cambridge University Press:  05 July 2018

I. V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
N. V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
S. N. Britvin
Affiliation:
Faculty of Geology, St Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034 Russia, and Nanomaterials Research Centre, Kola Science Center RAS, Fersman Str. 20, 184200 Apatity, Russia
Y. K. Kabalov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
J. Göttlicher
Affiliation:
Karlsruhe Institute of Technology, Institute for Synchrotron Radiation, Hermann von Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
V. O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
A. E. Zadov
Affiliation:
NPP ‘‘Teplokhim’’, Dmitrovskoye Avenue 71, 127238 Moscow, Russia
S. V. Krivovichev
Affiliation:
Faculty of Geology, St Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034 Russia, and Nanomaterials Research Centre, Kola Science Center RAS, Fersman Str. 20, 184200 Apatity, Russia
W. Schüller
Affiliation:
Im Strauβenpesch 22, 53518 Adenau, Germany
B. Ternes
Affiliation:
Bahnhofstrasse 45, 56727 Mayen, Germany
*

Abstract

Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeas = 1.82(3) and Dcalc = 1.79 g cm–3. Hielscherite is optically uniaxial (–), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d, Å (I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols M.C. (1995) Handbook of Mineralogy. Vol. II. Silica, Silicates. Mineral Data Publishing, Tucson, Arizona, USA.Google Scholar
Barnett, S.J., Adam, C.D. and Jackson, A.R.W. (2000) Solid solutions between ettringite and thaumasite. Journal of Materials Science, 35, 41094114.CrossRefGoogle Scholar
Basso, R., Lucchetti, G. and Palenzona, A. (1991) Gravegliaite, MnSO3·3H2O, a new mineral from Val Graveglia (Northern Apennines, Italy). Zeitschrift für Kristallographie, 197, 97106.CrossRefGoogle Scholar
Batic, O.R., Milanesi, C.A., Maiza, P.J. and Marfil, S.A. (2000) Secondary ettringite formation in concrete subjected to different curing conditions. Cement and Concrete Research, 30, 14071412.CrossRefGoogle Scholar
Brown, P.W. and Hooton, R.D. (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. Cement and Concrete Composites, 24, 361370.CrossRefGoogle Scholar
Brown, P.W., Hooton, R.D. and Clark, B.A. (2003) The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. Cement and Concrete Composites, 25, 939945.CrossRefGoogle Scholar
Chukanov, N.V., Britvin, S.N., Van, K.V., Mö ckel, S. and Zadov, A.E. (2012) Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new ettringite-group mineral from the Eifel area, Germany. The Canadian Mineralogist, 50, 5563.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R., Leavens, P.B. and Baum, J.L. (1983) Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. American Mineralogist, 68, 10331037.Google Scholar
Edge, A. and Taylor, H.F.W. (1971) Crystal structure of thaumasite [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Crystallographica, B27, 594601.CrossRefGoogle Scholar
Effenberger, H., Kirfel, A., Will, G. and Zobetz, E. (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6(SO4) (CO3)·12H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 1983, 6068.Google Scholar
Eklund, L., Hofer, T.S., Pribil, A.B., Rode, B.M. and Persson, I. (2012) On the structure and dynamics of the hydrated sulfite ion in aqueous solution - an ab initio QMCF MD simulation and large angle X-ray scattering study. Journal of the Chemical Society, Dalton Transactions, 41, 52095216.CrossRefGoogle ScholarPubMed
Frost, R.L. and Keeffe, E.C. (2009) Raman spectroscopic study of the sulfite-bearing minerals scotlandite, hannebachite and orschallite: implications for the desulfation of soils. Journal of Raman Spectroscopy, 40, 244248.CrossRefGoogle Scholar
Granger, M.M. and Protas, J. (1969) Détermination et étude de la structure cristalline de la jouravskite Ca3MnI V(SO4)(CO3 ) (OH)6·12H2O. Acta Crystallographica, B25, 19431951.CrossRefGoogle Scholar
Grier, D.G., Jarabek, E.L., Peterson, R.B., Mergen, L.E. and McCarthy, G.J. (2002) Rietveld structure refinement of carbonate and sulfite ettringite. Advances in X-ray Analysis, 45, 194199.Google Scholar
Gross, S. (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, 8184.Google Scholar
Hentschel, G. (1993) Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel. Lapis, 18(9), 1123.Google Scholar
Hentschel, G., Tillmanns, E. and Hofmeister, W. (1985) Hannebachite, natural calciumsulfate hemihydrate, CaSO3·1/2H2O. Neues Jahrbuch für Mineralogie, Monatschefte, 1985, 241250.Google Scholar
Jacobsen, S.D., Smyth, J.R. and Swope, R.J. (2003) Thermal expansion of hydrated six-coordinate s i l i c o n i n t h a u m a s i t e , C a 3 S i ( O H ) 6 (CO3)(SO4)·12H2O. Physics and Chemistry of Minerals, 30, 321329.CrossRefGoogle Scholar
Malinko, S.V., Chukanov, N.V., Dubinchuk, V.T., Zadov A.E. and Koporulina, E.V. (2001) Buryatite, Ca3(Si,Fe3+,Al)[SO4](OH)5O·12H2O, a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 130, 7278.[in Russian].Google Scholar
Martucci, A. and Cruciani, G. (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Physics and Chemistry of Minerals, 33, 723731.CrossRefGoogle Scholar
McDonald, A.M., Petersen, O.V., Gault, R.A., Johnsen, O., Niedermayr, G., Brandstätter, F. and Giester, G. (2001) Micheelsenite, (Ca,Y)3Al(PO3OH,CO3) (CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. Neues Jahrbuch für Mineralogie, Monatschefte, 2001, 337351.Google Scholar
Merlino, S. and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, 12931301.CrossRefGoogle Scholar
Miller, F.A. and Wilkins, C.H. (1952) Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 24, 12531294.CrossRefGoogle Scholar
Moore, A.E. and Taylor, H.F.W. (1970) Crystal structure of ettringite. Acta Crystallographica, B26, 386393.CrossRefGoogle Scholar
Motzet, H. and Pöllmann, H. (1999) Synthesis and characterisation of sulfite-containing AFm phases in the system CaO-Al2O3-SO2-H2O. Cement and Concrete Research, 29, 10051011.CrossRefGoogle Scholar
Nakamoto, K. (1997) Infrared Spectra of Inorganic and Coordination Compounds. Part A. Fifth edition. John Wiley and Sons, New York.Google Scholar
Paar, W.H., Braithwaite, R.S.W., Chen, T.T. and Keller, P. (1984) A new mineral, scotlandite (PbSO3) from Leadhills, Scotland: the first naturally occurring sulphite. Mineralogical Magazine, 48, 283288.CrossRefGoogle Scholar
Pöllmann, H., Kuzel, H.-J. and Wenda, R. (1989) Compounds with ettringite structure. Neues Jahrbuch für Mineralogie, Abhandlungen, 160, 133158.Google Scholar
Pushcharovsky, D.Y.., Lebedeva, Yu.S., Zubkova, N.V., Pasero, M., Bellezza, M., Merlino S. and Chukanov N.V. (2004) The crystal structure of sturmanite. The Canadian Mineralogist, 42, 723729.CrossRefGoogle Scholar
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.CrossRefGoogle ScholarPubMed
Schneider, J. (1989) Profile refinement on IBM-PCs. International Workshop on the Rietveld Method, Petten, The Netherlands.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Skoblinskaya, N.N., Krasilnikov, K.G., Nikitina, L.V. and Varlamov, V.P. (1975) Changes in crystal structure of ettringite on dehydration. 2. Cement and Concrete Research, 5, 419431.CrossRefGoogle Scholar
Weidenthaler, C., Tillmanns, E. and Hentschel, G. (1993) Orschallite, Ca3(SO3)2SO4·12H2O, a new calcium-sulfite-sulfate-hydrate mineral. Mineralogy and Petrology, 48, 167177.CrossRefGoogle Scholar
Weiss, S. (1990) Mineralfundstellen, Deutschland West. Weise, Munich, Germany.Google Scholar
Supplementary material: File

Pekov et al. supplementary material

CIF 1

Download Pekov et al. supplementary material(File)
File 12 KB
Supplementary material: File

Pekov et al. supplementary material

CIF 2

Download Pekov et al. supplementary material(File)
File 12.1 KB