Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T05:59:23.219Z Has data issue: false hasContentIssue false

Structural changes induced by cation ordering in ferrotapiolite

Published online by Cambridge University Press:  05 July 2018

M. Zema*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
S.C. Tarantino
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
A. Giorgiani
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
*

Abstract

Structural modifications as a function of the degree of order (Q) in FeTa2O6 ferrotapiolite have been characterized by means of single-crystal X-ray diffraction (SC-XRD). A total of 26 datasets covering the range of Q between 0.154 and 1 have been obtained by thermal treatments followed by quenching of natural tapiolite crystals. Ordering of Fe2+ at the A sites and of Ta5+ at the B sites causes a linear increase in the a/c lattice constants ratio, as a consequence of a linear decrease of the c dimension and only slight modifications of the a parameter. Calibration of a/c vs. Q represents a very useful tool for a rapid determination of the degree of order of tapiolite samples. Polyhedral volumes of the two octahedral sites vary linearly with Q as a consequence of the different ionic radii of the two species. Both the sites remain almost regular at all Q values but the B site shows an increasing off-centre displacement of the cation with increasing Q. Observed structure factors of supercell reflections, characterized by l ≠ 3n, increase linearly as a function of Q, thus representing a further tool for a quick evaluation of the degree of order.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonietti, V., Kinast, E.J., Zawislak, L.I., da Cunha and dos Santos, C.A. (2001) Structure refinement of mixed oxides (Fe x Co 1-x )Ta2O6 . Journal of Physics and Chemistry of Solids, 62, 12391242.CrossRefGoogle Scholar
Baur, W.H. (1994) Rutile type derivatives. Zeitschrift für Kristallographie, 209, 143150.Google Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, DJ. (2003) CRYSTALS version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Ada Crystallographica, A51, 3338.Google Scholar
Carruthers, J.R. and Watkin, D.J. (1979) Chebychev Weighting. Acta Crystallographica, A35, 698699.CrossRefGoogle Scholar
Donovan, J.J. and Rivers, M.L. (1990) PRSUPR - A PC Based Automation and Analysis Software Package for Wavelength-Dispersive Electron-Beam Microanalysis. Microbeam Analysis, 66-68.Google Scholar
Goldschmidt, V.M. (1926) Geochemische Verteilungsgesetze der Elemente. VI. Über die Kristallstrukturen vom Rutiltypus mit Bermerkungen zur Geochemie Zweiwertiger und Vierwertiger Elemente. Videnskapsselskapets Academii i Oslo I, Math.-Naturv. Klasse, Shifter, 1, 521.Google Scholar
Hansen, S., Landa-Cánovas, A., Ståhl, K. and Nilsson, J. (1995) Cation ordering waves in trirutiles. When X-ray crystallography fails. Acta Crystallographica, A51, 514519.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography. Kynoch Press, Birmingham, UK, vol. 4, pp. 99101.Google Scholar
Kinast, E.J., Zawislak, L.I., da Cunha, J.B.M., Antonietti, V., de Vasconcellos, M.A.Z. and dos Santos, C.A. (2002) Coexistence of rutile and trirutile phases in a natural tapiolite sample. Journal of Solid State Chemistry, 163, 218223.CrossRefGoogle Scholar
Larson, A.C. (1970) The inclusion of secondary extinction in least-squares refinement of crystal structures. Pp. 291294 in: Crystallographic Computing (Ahmed, F.R., Hall, S.R. and Huber, C.P., editors). Munksgaard, Copenhagen.Google Scholar
Mello, V.D., Zawislak, L.I., da Cunha, J.B.M., Kinast, E.J., Soares, J.B. and dos Santos, C.A. (1999) Structure and magnetic properties of layered (Fe x Co 1-x )Ta2O6 compounds. Journal of Magnetism and Magnetic Materials, 196–197, 846847.CrossRefGoogle Scholar
Novák, M., Černý, P., Cempírek, J., Šrein, V. and Filip, J. (2004) Ferrotapiolite as a pseudomorph of stibiotantalite from the Laštovičky lepidolite pegmatite, Czech Republic; an example of hydrothermal alteration at constant Ta/(Ta+Nb). The Canadian Mineralogist, 42, 11171128.CrossRefGoogle Scholar
Riss, A., Blaha, P., Schwarz, K. and Zeeman, J. (2003) Theoretical explanation of the octahedral distortion in FeF2 and MgF2 . Zeitschrift für Kristallographie, 218, 585589.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in co-ordination polyhedra. Science, 172, 567570.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Turnock, A.C. (1966) Synthetic wodginite, tapiolite and tantalite. The Canadian Mineralogist, 8, 461470.Google Scholar
Wise, M.A. and Černý, P. (1996) The crystal chemistry of the tapiolite series. The Canadian Mineralogist, 34, 631647.Google Scholar