Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:22:24.607Z Has data issue: false hasContentIssue false

The stabilities of secondary tin minerals. Part 2*: The hydrolysis of tin(II) sulphate and the stability of Sn3O(OH)2SO4

Published online by Cambridge University Press:  05 July 2018

R. Edwards
Affiliation:
School of Chemical and Physical Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
R. D. Gillard
Affiliation:
Department of Chemistry, University of Wales, Cardiff, P.O.Box 912, Cardiff CF1 3TB, UK
P. A. Williams
Affiliation:
School of Chemistry, University of Western Sydney, Nepean, P.O.Box 10, Kingswood, NSW 2750, Australia

Abstract

Tritin(II)dihydroxyoxosulphate, Sn3O(OH)2SO4, is a rare corrosion product found on the surfaces of certain tin alloys. A new synthesis based on the hydrolysis of SnSO4 is described. The stability constant determination of Sn3O(OH)2SO4,s, at 298.2K and 105Pa is determined using direct measurements via electrodes, of the activities of tin(II) and sulphate ions. ΔfG0(298.2K) is equal to −1563.1 ± 0.9 KJ mol−1.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannister, C.O. (1926) J. Inst. Metals, 35, 71–2.Google Scholar
Carson, C.M.(1926) J. Am. Chem. Soc., 48, 906–11.CrossRefGoogle Scholar
Davies, C.G. and Donaldson, J.D. (1967) J. Chem. Soc., (A), 1790-3.Google Scholar
Davies, C.G., Donaldson, J.D., Laughlin, D.R., Howie, R.A. and Beddoes, R. (1975) J. Chem. Soc. (Dalton), 2241—4.Google Scholar
Discher, C.A. (1953a) J. Electrochem. Soc., 100, 45–6.CrossRefGoogle Scholar
Discher, C.A. (19536) J. Electrochem. Soc., 100, 480–4.CrossRefGoogle Scholar
Ditte, M.A. (1882) Comptes Rendus Acad. Sci., 94, 792–4.Google Scholar
Edwards, R., Gillard, R.D. and Williams, P.A. (1992) Mineral. Mag., 56, 221–6.CrossRefGoogle Scholar
Faust, G.T. and Schaller, W.T. (1971) Z. Kristallogr.j 134, 116—41.Google Scholar
Gobom, S. (1976) Acta Chem. Scand. A30, 745—50.CrossRefGoogle Scholar
Grimvall, S. (1975) Acta Chem. Scand. A29, 590—8.CrossRefGoogle Scholar
Grimvall, S. (1982) Acta Chem. Scand. A36, 361—4.CrossRefGoogle Scholar
Hosking, F.K.G. (1970) Newsletter, Geol. Soc. Malaysia, 27, 57.Google Scholar
Howie, R.A. and Moser, W. (1973) Amer. Mineral., 58, 552.Google Scholar
Keller, H.F. (1917) J. Amer. Chem. Soc., 29, 2354—6.CrossRefGoogle Scholar
Krauskopf, K.B. (1982) Introduction to Geochemistry, Second Edition Singapore, McGraw-Hill, Inc.Google Scholar
MacLeod, I.D. (1982) The International J. of Nautical Archaeology and Underwater Exploration, 11(4), 267–75.CrossRefGoogle Scholar
Marshukova, N.K., Pavlovskii, A.B. and Sidorenko, G.A. (1984) Amer. Mineral., 70, 1331.Google Scholar
Marshukova, N.K., Pavlovskii, A.B., Sidorenko, G.A. and Chistyakover, N.I. (1982) Amer. Mineral, 67, 1077 Google Scholar
Matzko, J.J., Evans, H.T., Mrose M.E. and Aruscavage, P. (1985) Canad. Mineral., 23, 233–40.Google Scholar
Miyamoto, S. (1932) Bull. Chem. Soc. Japan, 7, 56. (Chem. Abs. 26, 2916.)Google Scholar
O'Connor, E.A. (1937) Nature, 153, 151–2.CrossRefGoogle Scholar
Pourbaix, M. (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, London. Pp. 475—84.Google Scholar
Rechnitz, G.A., Fricke, G.H. and Mohan, M.S. (1972) Ann. Chem., 44(6), 1098—9.CrossRefGoogle Scholar
Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) U.S. Geol. Surv. Bull., 1452.Google Scholar
Smythe, J.A. (1940) J. Inst. Metals, 66, 355–60.Google Scholar
Tobias, R.S. (1958) Acta Chem. Scand., 12, 198233. and references therein.CrossRefGoogle Scholar
Wanda, M. (1977) Acta Chem. Scand. A 31, 157—62.Google Scholar
White, J.S. and Nelen, J.A. (1973) Mineral. Rec.y 4, 2430.Google Scholar