Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T19:25:26.428Z Has data issue: false hasContentIssue false

Spodumene from rare-metal pegmatites of the Kolmozero lithium world-class deposit on the Fennoscandian shield: trace elements and crystal-rich fluid inclusions

Published online by Cambridge University Press:  28 December 2020

Lyudmila N. Morozova*
Affiliation:
Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, 14 Fersman St., Apatity184209, Russia
Ekaterina N. Sokolova
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, 3 Akademika Koptyuga Ave., Novosibirsk 630090, Russia
Sergey Z. Smirnov
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, 3 Akademika Koptyuga Ave., Novosibirsk 630090, Russia
Viсtor V. Balagansky
Affiliation:
Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, 14 Fersman St., Apatity184209, Russia
Aya V. Bazai
Affiliation:
Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, 14 Fersman St., Apatity184209, Russia
*
*Author for correspondence: Lyudmila N. Morozova, Email: [email protected]

Abstract

The paper investigates trace elements and crystal-rich fluid inclusions in spodumene from rare-metal pegmatites of the Kolmozero lithium deposit in the Kola region, Russia. The main lithium mineral in the pegmatites is spodumene, which occurs in three generations, designated as Spd-I, Spd-II and Spd-III. Iron, Na and Mn are the most typical element impurities in spodumene. The Fe/Mn ratio is 7.1 in Spd-I, 12.3 in Spd-II and 13.2 in Spd-III. Spd-II contains fluid and crystal-rich fluid inclusions. The crystal-rich fluid inclusions in Spd-II originally trapped CO2-bearing aqueous fluids with dissolved alkali carbonates. The crystal-rich fluid inclusions contain zabuyelite (Li2CO3) and cristobalite (SiO2) as solid phases, which have not been reported previously from the Kolmozero rare-metal pegmatites. These minerals are assumed to have resulted from a reaction between a CO2-bearing aqueous fluid and host Spd-II and are not related to the mineral-forming system of pegmatites.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Edward Sturgis Grew

References

Ahtola, T., Kuusela, J., Koistinen, E., Seppanen, H., Hatakka, T. and Lohva, J. (2010) Report of Investigations on the Leviakangas Lithium Pegmatite Deposit in Kaustinen, Western Finland. Geological Survey of Finland, archive report M 19/2323/2020/32, Kaustinen, Finland, 59 pp.Google Scholar
Anderson, A.J. (2013) Are silicate-rich inclusions in spodumene crystallized aliquots of boundary layer melt? Geofluids, 13, 460466.10.1111/gfl.12041CrossRefGoogle Scholar
Anderson, A.J. (2019) Microthermometric behavior of crystal-rich inclusions in spodumene under confining pressure. The Canadian Mineralogist, 57, 853865.10.3749/canmin.1900013CrossRefGoogle Scholar
Anderson, A.J., Clark, A.H. and Gray, S. (2001) The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: implications for the internal evolution of rare-element granitic pegmatites. The Canadian Mineralogist, 39, 15131527.10.2113/gscanmin.39.6.1513CrossRefGoogle Scholar
Annikova, I.Yu., Vladimirov, S.Z., Smirnov, S.Z., Uvarov, A.N., Gertner, I.F. and Gavryushina, O.A (2013) Geology and mineralogy of spodumene pegmatites of Mountain Shoria. Tomsk State University Journal, 376, 168174 [in Russian].Google Scholar
Bazarov, L.Sh. (1976) Physicochemical conditions of crystallization of rare-metal granite pegmatites. Pp. 94101 in: Genetic Research in Mineralogy, Collection of Scientific Papers (Dolgov, Yu A., Kostyuk, V.P. and Bazarov, L.Sh., editors). USSR Academy of Sciences, Siberian branch, Institute of Geology and Geophysics, Novosibirsk [in Russian].Google Scholar
Bowell, R.J., Lagos, L., De los Hoyos, C.R. and Declercq, J. (2020) Classification and characteristics of natural lithium resources. Elements, 16, 259264.10.2138/gselements.16.4.259CrossRefGoogle Scholar
Bulakh, A.G., Zolotaryov, A.A. and Krivovichev, V.G. (2014) Structure, Isomorphism, Formulas, and Classification of Minerals. Saint-Petersburg University Publisher, Saint-Petersburg, Russia, 133 pp [in Russian].Google Scholar
Butuzov, V.P. and Bryatov, L.V. (1957) Study of phase equilibriums in part of the H2O–SiO2–Na2CO3 system at high temperatures and pressures. Crystallography, 204, 944947 [in Russian].Google Scholar
Bykhovsky, L.Z. and Arkhipov, N.A. (2016) Rare metal raw materials in Russia: prospects for exploration and development of mineral resource base. Exploration and Protection of Mineral Resources, 11, 2636 [in Russian].Google Scholar
Černý, P. (1982) Anatomy and classification of granitic pegmatites. Pp. 139 in: Granitic Pegmatites in Science and Industry, Short Course Handbook. (Černý, P., editor). Mineralogical Association of Canada.Google Scholar
Černý, P. (1991) Rare-element granitic pegmatites; Part 1, Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18, 4967.Google Scholar
Černý, P. (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7, 393416.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.10.2113/gscanmin.43.6.2005CrossRefGoogle Scholar
Černý, P. and Ferguson, R.B. (1972) The Tanco pegmatite at Bernic Lake, Manitoba; IV, Petalite and spodumene relations. The Canadian Mineralogist, 11, 660678.Google Scholar
Chachowsky, L.E. (1987) Mineralogy, Geochemistry and Petrology of Pegmatitic Granites and Pegmatites at Red Sucker Lake and Gods Lake, Northeastern of Manitoba. University Manitoba, Winnipeg, 157 pp.Google Scholar
Charoy, B., Lhote, F. and Dusausoy, Y. (1992) The crystal chemistry of spodumene in some granitic aplite-pegmatite of northern Portugal. The Canadian Mineralogist, 30, 639651.Google Scholar
Claffy, E.W. (1953) Composition, tenebrescence and luminescence of spodumene minerals. American Mineralogist, 38, 919931.Google Scholar
Daly, J.S., Balagansky, V.V., Timmerman, M.J. and Whitehouse, M.J. (2006) The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Pp. 579597 in: European Lithosphere Dynamics, Memoir 32 (Gee, D.G. and Stephenson, R.A., editors). Geological Society, London.Google Scholar
Davis, R.O.E. (1904) Analysis of kunzite. American Journal of Science, 189(103), 129.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock Forming Minerals; v. 2A, Single-Chain Silicates, 2nd Edition. London: Longman, 668 pp.Google Scholar
Fersman, A.E. (1960) Selected Works (VI); Pegmatites (I), Granite pegmatites. Moscow, 745 pp [in Russian].Google Scholar
Filip, J., Novak, M. and Zboril, R. (2006) Spodumene from granite pegmatites of various genetic types: crystal chemistry and OH defects concentrations. Physics and Chemistry of Minerals, 32, 733746.CrossRefGoogle Scholar
Garrett, D.E. (2004) Handbook of Lithium and Natural Calcium Chloride. Elsevier, 488 pp.Google Scholar
Ginzburg, A.I. (1959) Spodumene and the processes of its change. Proceedings of the Mineralogical Museum, 9, 1255 [in Russian].Google Scholar
Glebovitsky, V.A. (editor) (2005) Early Precambrian of the Baltic shield. Nauka, Saint-Petersburg, 711 pp [In Russian].Google Scholar
Gordienko, V.V. (1970) Mineralogy, Geochemistry and Genesis of Spodumene Pegmatites. Nedra, Leningrad, 240 pp [in Russian].Google Scholar
Gordienko, V.V. (1996) Granite Pegmatites. Saint Petersburg University Publishers, Saint-Petersburg, 272 pp [in Russian].Google Scholar
Hanski, E.J. and Melezhik, V.A. (2013) Litho- and chronostratigraphy of the Palaeoproterozoic Karelian formations. Pp. 39110 in: Reading the Archive of Earth's Oxygenation, v. 2 (Melezhik, V.A., editor). Springer. Berlin.10.1007/978-3-642-29682-6_4CrossRefGoogle Scholar
Hassan, H. and Labib, M. (1978) Induced color centers in spodumene called kunzite. Neues Jahrbuch furMineralogie – Abhandlunger, 134, 104115.Google Scholar
Heinrich, W. and Gottschalk, M. (1995) Metamorphic reactions between fluid inclusions and mineral hosts; I, Progress of the reaction calcite + quartz = wollastonite + CO2 in natural wollastonite-hosted fluid inclusions. Contributions to Mineralogy and Petrology, 122, 5161.CrossRefGoogle Scholar
Hölttä, P., Balagansky, V., Garde, A.A., Mertanen, S., Peltonen, P., Slabunov, A., Sorjonen-Ward, P. and Whitehouse, M. (2008) Archean of Greenland and Fennoscandia. Episodes, 31, 1319.CrossRefGoogle Scholar
Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P. and Wallington, T.J. (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 5569.CrossRefGoogle Scholar
Kotel'nikova, Z.A and Kotel'nikov, A.R. (2009) Liquid separation in the presence of vapor in synthetic fluid inclusions obtained from Na2CO3 solutions. Doklady Earth Sciences, 429, 15331535.CrossRefGoogle Scholar
Kozlov, N.E., Sorokhtin, N.O., Glaznev, V.N., Kozlova, N.E., Ivanov, A.A., Kudryashov, N.M., Martynov, E.V., Tyuremnov, V.A., Matyushkin, A.V. and Osipenko, L.G. (2006) Archean Geology of the Baltic shield. Nauka, Saint-Petersburg, 345 pp [in Russian].Google Scholar
Kratz, K.O. (editor) (1978) Earth Crust of the Eastern Baltic Shield. Nauka, Leningrad, 232 pp [In Russian].Google Scholar
Kudryashov, N.M., Petrovsky, M.N., Mokrushin, A.V. and Elizarov, D.V. (2013) Neoarchean sanukitoid magmatism in the Kola region: geological, petrochemical, geochronological and isotopic-geochemical data. Petrologiya, 21, 351374.CrossRefGoogle Scholar
Lagache, M. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35, 153165.Google Scholar
Lahtinen, R. and Huhma, H. (2019) A revised geodynamic model for the Lapland-Kola orogen. Precambrian Research, 330, 119.CrossRefGoogle Scholar
Li, J. and Chou, I-M. (2017) Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika lithium deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell. Geofluids, 2017, 112.Google Scholar
London, D. (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2–H2O: a petrogenetic grid for lithium-rich pegmatites. American Mineralogist, 69, 9951004.Google Scholar
London, D. (1986a) Formation of tourmaline-rich gem pockets in miarolitic pegmatites. American Mineralogist, 71, 396405.Google Scholar
London, D. (1986b) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71, 376395.Google Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist, Special Publication 10, Quebec, 347 pp.Google Scholar
London, D. (2017) Reading pegmatites: part 3 - what lithium minerals say. Rocks & Minerals, 92, 143157.CrossRefGoogle Scholar
McCaffrey, K.J.W., Lonergan, L. and Wilkinson, J.J. (1999) Fractures, Fluid Flow and Mineralization. Geological Society of London, London, 337 pp.Google Scholar
Mints, M.V. (2015a) Kolmozero–Voronya belt. Pp. 3940 in: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure. (Condie, K. and Harvey, F.E., editors). Geological Society of America, Special Paper 510, Boulder, Colorado.CrossRefGoogle Scholar
Mints, M.V. (2015b) Paleoarchean and Mesoarchean microcontinents. Pp. 1932 in: East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure (Condie, K. and Harvey, F.E., editors). Geological Society of America, Special Paper 510, Boulder, Colorado.CrossRefGoogle Scholar
Morozova, L.N. (2018) Kolmozero lithium deposit of rare metal pegmatites: new data on rare element composition (Kola Peninsula). Litosfera, 18, 8298 [in Russian].Google Scholar
Morozova, L.N. (2019) The Kolmozero deposit: a unique Li source in the European Arctic of Russia. IOP Conference Series: Earth and Environmental Science, 302, 012047, https://doi.org/10.1088/1755-1315/302/1/012047.CrossRefGoogle Scholar
Morozova, L.N. and Bazai, A.V. (2019) Spodumene from rare-metal pegmatites of the Kolmozerskoe lithium deposit (Kola Peninsula). Zapiski RMO, 1, 6578 [in Russian].Google Scholar
Morozova, L.N., Bayanova, T.B., Bazai, A.V., Lyalina, L.M., Serov, P.A., Borisenko, E.S. and Kunakkuzin, E.L. (2017) Rare metal pegmatites of the Kolmozerskoe lithium deposits of the Arctic region, the Baltic shield: new geochronological data. Vestnik of the Kola Research Center of the Russian Academy of Sciences, 9, 4352 [in Russian].Google Scholar
Petrov, V.P., Belyaev, O.A., Voloshina, Z.M., Balagansky, V.V., Glazunkov, A.N. and Pozhilenko, V.I. (1990) Endogenous Metamorphic Regimes of the Early Precambrian (Northeastern Part of the Baltic Shield). Nauka, Leningrad, 184 pp [In Russian].Google Scholar
Roedder, E. (editor)(1984) Fluid Inclusions. Reviews in Mineralogy 12. Mineralogical Society of America, Chantilly, Virginia, USA, 644 pp.CrossRefGoogle Scholar
Rundqvist, D.V. and Mitrofanov, F.P. (editors) (1993) Precambrian Geology of the USSR. Elsevier Science, Amsterdam, 528 pp.Google Scholar
Stilling, A. (1998) Bulk Composition of the Tanco Pegmatites at Bernic Lake, Manitoba, Canada. Winnipeg, Manitoba, Canada, 76 pp.Google Scholar
Stilling, A., Černý, P. and Vanstone, P.J. (2006) The Tanco pegmatite at Bernic Lake, Manitoba; XVI, Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44, 599623.CrossRefGoogle Scholar
Thomas, R., Davidson, P. and Beurlen, H. (2011) Tantalite-(Mn) from the Borborema pegmatite province, northeastern Brazil: conditions of formation and melt- and fluid-inclusion constraints on experimental studies. Mineralium Deposita, 46, 749759.CrossRefGoogle Scholar
Timmerman, M.J. and Daly, S. (1995) Sm–Nd evidence for late Archaean crust formation in the Lapland – Kola Mobile belt, Kola Peninsula, Russia and Norway. Precambrian Research, 72, 97107.CrossRefGoogle Scholar
Vetrin, V.R. (1984) Granitoids of the Murmansk Block. Kola Branch of the Academy of Sciences of the USSR, Apatity, 123 pp [in Russian].Google Scholar
Vrevsky, A.B. and Lvov, P.A. (2016) Isotopic age and heterogeneous sources of gabbro-anorthosites from the Patchemvarek massif, Kola Peninsula. Doklady Earth Sciences, 469, 716721.CrossRefGoogle Scholar
Wilkinson, J.J., Nolan, J. and Rankin, A.H. (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology, 24, 10591062.2.3.CO;2>CrossRefGoogle Scholar
Zagorsky, V.E., Prokofiev, V.Yu. and Kuzmina, T.M. (1992) Melt inclusions in spodumene and quartz of rare metal pegmatites. Doklady Earth Sciences, 325, 354356 [in Russian].Google Scholar
Zhu, Y.-F., Zeng, Y. and Gu, L. (2006) Geochemistry of the rare metal-bearing pegmatite no. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27, 6177.CrossRefGoogle Scholar