Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:20:37.227Z Has data issue: false hasContentIssue false

Spectroscopy and X-ray structure refinement of sekaninaite from Dolní Bory (Czech Republic)

Published online by Cambridge University Press:  05 July 2018

F. Radica
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
F. Capitelli
Affiliation:
Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29, 300, 00016 Monterotondo, Rome, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy Laboratori Nazionali di Frascati – Istituto Nazionale di Fisica Nucleare (LNF – INFN), Via E. Fermi 40, 00044 Frascati, Rome, Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy Laboratori Nazionali di Frascati – Istituto Nazionale di Fisica Nucleare (LNF – INFN), Via E. Fermi 40, 00044 Frascati, Rome, Italy Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Rome, Italy
A. Cavallo
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Rome, Italy
M. Piccinini
Affiliation:
Porto Conte Ricerche s.r.l., Strada Provinciale 55 Km 8, 400, 07041 Alghero, Sassari, Italy
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

The crystal chemistry of sekaninaite from Dolní Bory, Czech Republic, was characterized by a multimethod approach. Particular emphasis was put on the characterization of the channel constituents (i.e. H2O and CO2). Electron microprobe analysis shows the sample to be close to the Fe endmember [XFe = Fe/(Fe+Mg) = 94%) with significant Mn (1.48 wt.%) present; laser ablation mass-spectrometry showed the presence of 0.42 wt.% Li2O. H2O and CO2 contents (1.48 and 0.17 wt.%, respectively) were determined via secondary-ion mass-spectrometry. Sample homogeneity was checked by Fourier-transform infrared (FTIR) imaging using a microscope equipped with a focal plane array detector. Single-crystal FTIR spectroscopy confirmed the presence of two types of H2O groups in different orientations (with prevalence of the type II orientation), and that CO2 is oriented preferentially normal to the crystallographic c axis. Using the Beer-Lambert relation, integrated molar coefficients, εi, were calculated for both types of H2O (εi H2O[I] = 6000±2000; εi H2O[II] = 13000±1000) and for CO2iCO2 = 2000±1000).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R.D. and Rossman, G.R. (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. American Mineralogist, 19, 319327.Google Scholar
Armbruster, T. (1986). Role of Na in the structure of low-cordierite: A single-crystal X-ray study. American Mineralogist, 71, 746757.Google Scholar
Armbruster, T. and Bloss, F.D. (1982) Orientation and effects of channel H2O and CO2 in cordierite. American Mineralogist, 67, 284291.Google Scholar
Armbruster, T. and Irouschek, A. (1983) Cordierites from the Lepontine Alps: Na + Be?Al substitution, gas content, cell parameters and optics. Contributions to Mineralogy and Petrology, 82, 389396.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Ottolini, L., Libowitzky, E. and Beran, A. (2005) The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study. Physics and Chemistry of Minerals, 32, 6576.CrossRefGoogle Scholar
Beran, A., Langer, K. and Andrut, M. (1993) Single crystal infrared spectra in the OH range fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenoliths. Mineralogy and Petrology, 48, 257268.CrossRefGoogle Scholar
Bloss, F.D. (1981). The Spindle Stage: Principles and Practice. Cambridge University Press, Cambridge. Boberski, C. and Schreyer, W. (1990) Synthesis and water contents of Fe2+-bearing cordierites. European Journal of Mineralogy, 2, 565584.Google Scholar
Bulbak, T.A. and Shvedenkova, S.V. (2011) Solid solutions of (Mg, Fe2+)-cordierite: Synthesis, water content, and magnetic properties. Geochemistry International, 49, 391406.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609613.CrossRefGoogle Scholar
Černý, P., Chapman, R., Schreyer, W., Ottolini, L., Bottazzi, P. and McCammon, C.A. (1997) Lithium in sekaninaite from the type locality Dolni Bory, Czech Republic. The Canadian Mineralogist, 35, 167173.Google Scholar
Cesare, B., Maineri, C., Baron Toaldo, A., Pedron, D. and Acosta Vigil, A. (2007) Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237, 433449.CrossRefGoogle Scholar
Cohen, J.P., Ross, F.K. and Gibbs, G.V. (1977) An X-ray and neutron diffraction study of hydrous low cordierite. American Mineralogist, 62, 6778.Google Scholar
Della Ventura, G., Bellatreccia, F., Cesare, B., Harley, S. and Piccinini, M. (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: Application to mineral and melt devolatilization. Lithos, 113, 498506.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Marcelli, A., Cestelli Guidi, M., Piccinini, M., Cavallo, A. and Piochi, M. (2010) FTIR imaging in Earth Sciences. Analytical and Bioanalytical Chemistry, 397, 20392049.CrossRefGoogle ScholarPubMed
Della Ventura, G., Radica, F., Bellatreccia, F., Cavallo, A., Capitelli, F. and Harley, S. (2012) Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy. Contributions to Mineralogy and Petrology, 164, 881894.CrossRefGoogle Scholar
Duisenberg, A.J.M., Kroon-Batenburg, L.M.J. and Schreurs, A.M.M. (2003) An intensity evaluation method: EVAL-14. Journal of Applied Crystallography, 36, 220229.CrossRefGoogle Scholar
Geiger, C.A. and Kolesov, B.A. (2002). Microscopic–macroscopic relationships in silicates: examples from IR and Raman spectroscopy and heat capacity measurements. Pp. 347387. in: Energy Modelling in Minerals (C.-M. Gramaccioli, editor). European Notes in Mineralogy, 4. Eötvös University Press, Budapest.Google Scholar
Goldman, D.S., Rossman, G.R. and Dollase, W.A. (1977) Channel constituents in cordierite. American Mineralogist, 62, 11441157.Google Scholar
Gottesmann, B. and Förster, H.J. (2004) Sekaninaite from the Satzung granite (Erzgebirge, Germany): magmatic or xenolithic? European Journal of Mineralogy, 16, 483491.Google Scholar
Grapes, R., Korzhova, S., Sokol, E. and Seryotkin, Y. (2010) Paragenesis of unusual Fe-cordierite (sekaninaite)- bearing paralava and clinker from the kuznetsk coal basin, Siberia, Russia. Contributions to Mineralogy and Petrology, 162, 253273.CrossRefGoogle Scholar
Guastoni, A., Demartin, F. and Pezzotta, F. (2004) Sekaninaite delle pegmatiti granitiche di Feriolo e Baveno (VB). Atti della Società Italianadi Scienze Naturali e Museo Civico di Storia Naturale Milano, 145, 5968.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone Spindle Stage Short Course, a new version of EXCALIBR, and how to build a spindle stage. Microscope, 52, 2339.Google Scholar
Gunter, M.E., Downs, R.T., Bartelmehs, K.L., Evans, S.H., Pommier, C.J.S., Grow, J.S., Sanchez, M.S. and Bloss, F.D. (2005) Optic properties of centimeter-sized crystals determined in air with the spindle stage using EXCALIBRW. American Mineralogist, 90, 16481654.CrossRefGoogle Scholar
Hawthorne, F.C. and Černý , P. (1977) The alkali-metal positions in Cs-Li beryl. The Canadian Mineralogist, 15, 414421.Google Scholar
Herzberg, G. (1956) Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Company, New York.Google Scholar
Hochella, M.F. Jr., Brown, G.E. Jr., Ross, F.K. and Gibbs, G.V. (1979) High-temperature crystal chemistry of hydrous Mg- and Fe-Cordierite. American Mineralogist, 64, 337351.Google Scholar
Khomenko, V.M. and Langer, K. (2005). Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. American Mineralogist, 90, 19131917.CrossRefGoogle Scholar
Kolesov, B.A. and Geiger, C.A. (2000) Cordierite II: the role of CO2 and H2O. American Mineralogist, 85, 12651274.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319327.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Malcherek, T., Domeneghetti, M.C., Tazzoli, V., Ottolini, L., McCammon, C. and Carpenter, M.A. (2001) Structural properties of ferromagnesian cordierites. American Mineralogist, 86, 6679.CrossRefGoogle Scholar
Nonius, (1998) COLLECT. Nonius BV, Delft, The Netherlands.Google Scholar
Orlandi, P. and Pezzotta, F. (1994) La sekaninaite dei filoni pegmatitici elbani. Atti della Società Toscana di Scienze Naturali, Memorie, 100, 8591.Google Scholar
Paukov, I.E., Kovalevskaya, Y.A., Rahmoun, N.-S. and Geiger, C.A. (2007) Heat capacity of synthetic hydrous Mg-cordierite at low temperatures: thermodynamic properties and the behavior of the H2O molecules in selected hydrous micro and nanoporous silicates. American Mineralogist, 92, 388396.CrossRefGoogle Scholar
Ryback, G., Nawaz, R. and Farley, E. (1988) Seventh supplementary list of British Isles Minerals (Irish). Mineralogical Magazine, 52, 267274.CrossRefGoogle Scholar
Sekanina, J. (1928) Minerals of Moravian pegmatites. Acta Musei Moraviae, Scientie Naturales, 26, 113224. (in Czech).Google Scholar
Selkregg, K.R. and Bloss, F.D. (1980). Cordierites: compositional controls of D, cell parameters, and optical properties. American Mineralogist, 65, 522533.Google Scholar
Sharygin, V.V., Sokol, E.V. and Belakovskii, D.I. (2009) Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russian Geology and Geophysics, 50, 703721.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica. A64, 112122.CrossRefGoogle Scholar
Sherriff, B.L., Grundy, H.D., Hartman, J.S., Hawthorne, F.C. and Černý , P. (1991) The incorporation of alkalis in beryl, a multinuclear MAS-NMR and crystal structure study. The Canadian Mineralogist, 29, 271285.Google Scholar
Staněk, J. and Miškovský, J. (1964) Iron-rich cordierite from the Dolní Bory pegmatite. Casopis pro mineralogii a geologii, 9, 191192. in Czech).Google Scholar
Staněk, J. and Miškovský, J. (1975) Sekaninaite, a new mineral of the cordierite series, from Dolní Bory, Czechoslovakia. Scripta Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis; Geologia 1, 5, 2130.Google Scholar
Su, S.C., Bloss, F.D. and Gunter, M.E. (1978) Procedures and computer programs to refine the double variation method. American Mineralogist, 72, 10111013.Google Scholar
Thompson, P., Harley, S.L. and Carrington, D.P. (2001) The distribution of H2O-CO2 between cordierite and granitic melt under fluid-saturated conditions at 5 kbar and 900ºC. Contributions to Mineralogy and Petrology, 142, 107118.CrossRefGoogle Scholar
Yakubovich, O.V., Massa, W., Pekov, I.V., Gavrilenko, P.G. and Chukanov, N.V. (2004) Crystal structure of the Na-, Ca-, Be-cordierite and crystallochemical regularities in the cordierite–sekaninaite series. Crystallography Reports, 49, 953963.CrossRefGoogle Scholar
Supplementary material: File

Radica et al. supplementary material

CIF

Download Radica et al. supplementary material(File)
File 44.5 KB