Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:59:08.712Z Has data issue: false hasContentIssue false

Spectral mineralogy of terrestrial planets: scanning their surfaces remotely

Published online by Cambridge University Press:  05 July 2018

Roger G. Burns*
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

Spectral measurements of sunlight reflected from planetary surfaces, when correlated with experimental visible-near-infrared spectra of rock-forming minerals, are being used to detect transition metal cations, to identify constituent minerals, and to determine modal mineralogies of regoliths on terrestrial planets. Such remote-sensed reflectance spectra measured through earth-based telescopes may have absorption bands in the one micron and two micron wavelength regions which originate from crystal field transitions within Fe2+ ions. Pyroxenes with Fe2+ in M2 positions dominate the spectra, and the resulting 1 μm versus 2 µm spectral determinative curve is used to identify compositions and structure-types of pyroxenes on surfaces of the Moon, Mercury, and asteroids, after correcting for experimentally-determined temperature-shifts of peak positions. Olivines and Fe2+-bearing plagioclase feldspars also give diagnostic peaks in the 1 µm region, while tetrahedral Fe2+ in glasses absorb in the 2 µm region as well. Opaque ilmenite, spinel and metallic iron phases mask all of these Fe2+ spectral features. Laboratory studies of mixed-mineral assemblages enable coexisting Fe2+ phases to be identified in remote-sensed reflectance spectra of regoliths. Thus, noritic rocks in the lunar highlands, troctolites in central peaks of impact craters such as Copernicus, and high-Ti and low-Ti mare basalts have been mapped on the Moon's surface by telescopic reflectance spectroscopy. The Venusian atmosphere prevents remote-sensed spectral measurements of its surface mineralogy, while atmospheric CO2 and ferric-bearing materials in the regolith on Mars interfere with pyroxene characterization in bright- and dark-region spectra. Reflectance spectral measurements of several meteorite types, including specimens from Antarctica, are consistent with a lunar highland origin for achondrite ALHA 81005 and a martian origin for shergottite EETA 79001, although source regions may not be outermost surfaces of the Moon and Mars. Correlations with asteroid reflectance spectra suggest that Vesta is the source of basaltic achondrites, while wide ranges of olivine/pyroxene ratios are inconsistent with an ordinary-chondrite surface composition of many asteroids. Visible-near-infrared spectrometers are destined for instrument payloads in future spacecraft missions to neighbouring solar system bodies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Eid, R. M. (1976) Absorption spectra of transition metal-bearing minerals at high pressures. In The Physics and Chemistry of Minerals and Rocks (Strens, R. G. J., ed.) J. Wiley, New York, 641-75.Google Scholar
Adams, J. B. (1968) Lunar and martian surfaces: petrologic significance of absorption bands in the near infrared. Science 159, 1453-5.CrossRefGoogle ScholarPubMed
Adams, J. B. (1974) Visible and near-infrared diffuse reflectance: spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 79, 4829-36.CrossRefGoogle Scholar
Adams, J. B. (1975) Interpretations of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals. (Karr, C. Jr., ed.) Academic Press, New York, 91116.CrossRefGoogle Scholar
Bancroft, G. M. and Burns, R. G. (1967) Interpretation of the electronic spectra of iron in pyroxenes. Am. Mineral. 52, 1278-87.Google Scholar
Bell, J. F. and Keil, K. (1988) Spectral alteration effects in chondritic gas-rich breccias: implications for S-class and Q-class asteroids. Proc. Lunar Planet. Sci. Conf., 19th, 573-80. (Cambridge Univ. Press)Google Scholar
Bell, P. M., Mao, H. K. and Rossman, G. R. (1975) Absorption spectroscopy of ionic and molecular units in crystals and glasses. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals. (Karr, C. Jr., ed.) Academic Press, New York, 138.Google Scholar
Burns, R. G. (1965) Electronic spectra of silicate minerals: applications of crystal field theory to aspects of geochemistry. PhD. Diss., Univ. Calif. Berkeley, California.Google Scholar
Burns, R. G. (1966a) Origin of optical pleochroism in orthopyroxenes. Mineral. Mag. 35, 715-9.Google Scholar
Burns, R. G. (1966b) Apparatus for measuring polarized absorption spectra of small crystals. J. Sci. Instruments 43, 58-60.CrossRefGoogle Scholar
Burns, R. G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge Univ. Press, London.Google Scholar
Burns, R. G. (1974) The polarized spectra of iron in silicates: olivine. A discussion of neglected contributions from Fe 2+ ions in M(1) sites. Am. Mineral. 59, 625-9.Google Scholar
Burns, R. G. (1982) Electronic spectra of minerals at high pressures: How the mantle excites electrons. In High-Pressure Researches in Geoscience (Schreyer, W., ed.) E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 2246.Google Scholar
Burns, R. G. (1985) Thermodynamic data from crystal field spectra. In Microscopic to Macroscopic: Atomic Environments to Mineral Thermodynamics. (Kieffer, S. W. and Navrotsky, A., eds., Rev. Mineral. 14, 277-316.CrossRefGoogle Scholar
Burns, R. G. (1986) Terrestrial analogues of the surface rocks on Mars. Nature 320, 55-6.CrossRefGoogle Scholar
Burns, R. G. and Huggins, F. A. (1973) Visible-region absorption spectra of a Ti 3+ fassaite from the Allende meteorite: a discussion. Am. Mineral. 58, 955-61.Google Scholar
Burns, R. G. and Vaughan, D. J. (1975) Polarized electronic spectra. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals. (Karr, C. Jr., ed.) Academic Press, New York, 3976.CrossRefGoogle Scholar
Burns, R. G. and Vaughan, D. J., Abu-Eid, R. M. and Huggins, F. E. (1972a) Crystal field spectra of lunar pyroxenes. Proc. Lunar Sci. Conf., 3rd 1, 533-43.Google Scholar
Burns, R. G. and Vaughan, D. J., Abu-Eid, R. M. and Huggins, F. E., Huggins, F. E., and Abu-Eid, R. M. (1972b) Polarized absorption spectra of single crystals of lunar pyroxenes and olivines. Moon 4, 93-102.CrossRefGoogle Scholar
Burns, R. G. and Vaughan, D. J., Abu-Eid, R. M. and Huggins, F. E., Huggins, F. E., and Abu-Eid, R. M., Vaughan, D. J., Abu-Eid, R. M., Witner, M. and Morawsky, A. (1973) Spectral evidence for Cr3+ Ti 3+, and Fe2+ rather than Cr2+ and Fe2+ in lunar ferromagnesian silicates. Proc. Lunar Sci. Conf., 4th, 983-94.Google Scholar
Burns, R. G. and Vaughan, D. J., Abu-Eid, R. M. and Huggins, F. E., Huggins, F. E., and Abu-Eid, R. M., Vaughan, D. J., Abu-Eid, R. M., Witner, M. and Morawsky, A., Parkin, K. M., Loeffler, B. M., Leung, I. S. and Abu-Eid, R. M. (1976) Further characteristics of spectral features attributable to titanium on the moon. Ibid. 7th, 2561-78.Google Scholar
Charette, M. P., McCord, T. B., Pieters, C. and Adams, J. B. (1974) Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res. 79, 1605-13.CrossRefGoogle Scholar
Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. and Reed, K. L. (1986) Calibrations of phase abundance, composition, and particle size distribution for olivineorthopyroxene mixtures from reflectance spectra. Ibid. 91, 11641-53.Google Scholar
Cruikshank, D. P. and Hartmann, W. K. (1984) The meteorite-asteroid connection: Two olivine-rich asteroids. Science 223, 281-2.CrossRefGoogle ScholarPubMed
Dyar, M. D., and Burns, R. G. (1981) Coordination chemistry of iron in glasses contributing to remotesensed spectra of the moon. Proc. Lunar Planet. Sci. Con f, 12th, 695-702.Google Scholar
Farr, T. G., Bates, B. A., Ralph, R. L. and Adams, J. B. (1980) Effects of overlapping optical absorption bands of pyroxene and glass on the reflectance spectra of lunar solis. Ibid. 11th, 719-29.Google Scholar
Gaddis, L. R., Pieters, C. M. and Hawke, B. R. (1985) Remote sensing of lunar pyroclastic mantling deposits. Icarus 61, 461-89.CrossRefGoogle Scholar
Garrey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. J. Geophys Res. 81, 905-20.Google Scholar
Garrey, M. J. and McCord, T. B. (1978) Asteroid surface materials: mineralogical characterization from reflectance spectroscopy. Space Sci. Rev. 21, 555-628.Google Scholar
Goldman, D. S. and Rossman, G. W. (1977) The spectra of iron in orthopyroxenes revisited: the splitting of the ground state. Am. Mineral. 62, 151-7.Google Scholar
Gooding, J. L. and Muenow, D. W. (1986) Martian volatiles in shergottite EETA 79001: new evidence from oxidized sulfur and sulfur-rich aluminosilicates. Geochim. Cosmochim. Acta 50, 1049-59.CrossRefGoogle Scholar
Gooding, J. L. and Muenow, D. W., Wentworth, S. J. and Zolensky, M. E. (1988) Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Ibid. 52, 909-15.CrossRefGoogle Scholar
Hallimond, A. F. (1956) Manual of the Polarizing Microscope. Cooke, Troughton, and Simms; York.Google Scholar
Hazen, R. M., Mao, H. K. and Bell, P. M. (1977) Effects of compositional variation on absorption spectra of lunar olivines. Proc. Lunar Sci. Conf., 8th, 1081-90.Google Scholar
Hazen, R. M., Mao, H. K. and Bell, P. M., Bell, P. M. and Mao, H. K. (1978) Effects of compositional variation on absorption spectra of lunar pyroxenes. Ibid. 9th, 2919-34.Google Scholar
Loeflter, B. M., Burns, R. G., Tossell, J. A., Vaughan, D. J. and Johnson, K. H. (1974) Charge transfer in lunar materials: interpretations of ultraviolet-visible spectral properties of the moon. Ibid. 5th, 3, 3007-16.Google Scholar
Loeflter, B. M., Burns, R. G., Tossell, J. A., Vaughan, D. J. and Johnson, K. H. (1975) Metal-metal charge transfer transitions: interpretation of visible-region spectra of the moon and lunar materials, Ibid. 6th, 2663-76.Google Scholar
McCord, T. B. and Adams, J. B. (1969) Spectral reflectivity of Mars. Science 163, 1058-60.CrossRefGoogle ScholarPubMed
McCord, T. B. and Adams, J. B. and Clark, R. N. (1979) The Mercury soil: presence of Fe2+ . J. Geophys. Res. 84, 7664-8.CrossRefGoogle Scholar
McCord, T. B. and Adams, J. B. and Clark, R. N., Hawke, B. R., McFadden, L. A., Owensby, P. H., Pieters, C. M. and Adams, J. B. (1981) Moon: near-infrared spectral reflectance, a first good look. Ibid. 86, 10883-92.CrossRefGoogle Scholar
McCord, T. M., ed. (1988) Reflectance Spectroscopy in Planetary Science: Review and Strategy for the Future. NASA Spec. Rept. 493, Planet. Geol. Geophys. Progr., 37pp.Google Scholar
McFadden, L. A., Gaffey, M. J., Takeda, H., Jackowski, T. L. and Reed, K. L. (1982) Reflectance spectroscopy of diogenite meteorite types from Antarctica and their relationship to asteroids. Mere. Nat. Inst. Plar Res. 25, 188-206.Google Scholar
McFadden, L. A., Gaffey, M. J., Takeda, H., Jackowski, T. L. and Reed, K. L. and MeCord, T. B. (1984) Mineralogicalpetrological characterization of near-Earth asteroids. Icarus 59, 25-40.CrossRefGoogle Scholar
Mao, H. K. and Bell, P. M. (1973) Polarized crystal field spectra of the moon. In Analytical Methods Developed for Application to Lunar-Sample Analysis. Amer. Soc. Testing Materials, STP 539, 100-19.Google Scholar
Mustard, J. F. and Pieters, C. M. (1987) Quantitative abundance estimates from bidirectional reflectance measurements. J. Geophys. Res. 92, E61726.CrossRefGoogle Scholar
Nash, D. B. and Conel, J. E. (1974) Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite. Ibid. 79, 1615-21.CrossRefGoogle Scholar
Nolet, D. A., Burns, R. G., Flamm, S. L. and Besancon, J. R. (1979) Spectra of Fe-Ti silicate glasses: implications to remote-sensing of planetary surfaces. Proc. Lunar Planet. Sci., 10th, 1775-86.Google Scholar
Osborne, M. D., Parkin, K. M. and Burns, R. G. (1978) Temperature-dependence of Fe-Ti spectra in the visible region: implications to mapping Ti concentrations on hot planetary surface. Ibid. 9th, 2949-60.Google Scholar
Parkin, K. M. and Burns, R. G. (1980) High-temperature crystal field spectra of transition metal-bearing minerals: relevance to remote-sensed spectra of planetary surfaces. Ibid. 11th, 731-55.Google Scholar
Pieters, C. M. (1978) Mare basalt types on the front side of the moon: a summary of spectral reflectance data. Ibid. 9th, 2825-50.Google Scholar
Pieters, C. M. (1982) Copernicus crater central peak: lunar mountain of unique composition. Science 215, 59-61.CrossRefGoogle ScholarPubMed
Pieters, C. M. (1986) Composition of the lunar highland crust from near-infrared spectroscopy. Rev. Geophys. 24, 557-78.CrossRefGoogle Scholar
Pieters, C. M., Hawke, B. R., Gaffey, M. and McFadden, L. A. (1983) Possible lunar source areas of meteorite ALHA81005: geochemical remote sensing information. Geophys. Res. Lett. 10, 813-6.CrossRefGoogle Scholar
Pieters, C. M., Hawke, B. R., Gaffey, M. and McFadden, L. A., Adams, J. B., Mouginis-Marx, P. J., Zisk, S. H., Smith, M. G., Head, J. W. and McCord, T. B. (1985) The nature of crater rays: the Copernicus example. J. Geophys. Res. 90, 12393-413.CrossRefGoogle Scholar
Pieters, C. M., Hawke, B. R., Gaffey, M. and McFadden, L. A., Adams, J. B., Mouginis-Marx, P. J., Zisk, S. H., Smith, M. G., Head, J. W. and McCord, T. B., Head, J. W., Patterson, W., Pratt, S., Garvin, J., Barsukov, V. I., Basilevsky, A. T., Khodakovsky, I. L., Panfilov, A. S., Gektin, Yu. M. and Narayeva, Y. M. (1986) The color of the surface of Venus. Science 234, 1379-83.CrossRefGoogle ScholarPubMed
Rossman, G. R. (1980) Pyroxene spectroscopy. In Pyroxenes (Prewitt, C. T., ed.. Rev. Mineral. 7, 91-115.Google Scholar
Roush, T. L. and Singer, R. B. (1986) Gaussian analysis of temperature effects on the reflectance spectra of mafic minerals in the 1-1μm region. J. Geophys. Res. 91, 10301-8.CrossRefGoogle Scholar
Runciman, W. A., Sengupta, D. and Marshall, M. (1973a) The polarized absorption spectra of iron in silicates. I. Enstatite. Am. Mineral. 58, 444-50.Google Scholar
Runciman, W. A., Sengupta, D. and Marshall, M. and Gourley, J. T. (1973b) The polarized absorption spectra of iron in silicates. II. Olivine. Ibid. 58, 451-6.Google Scholar
Sherman, D. M., Burns, R. G. and Burns, V. M. (1982) Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy. Proc. Lunar Planet. Sci. Conf., 12th J. Geophys. Res. 87, 100169-180.Google Scholar
Singer, R. B. (1981) Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivines, and iron oxides. J. Geophys. Res. 86, 7967-82.CrossRefGoogle Scholar
Singer, R. B. (1985) Spectroscopic observations of Mars. Adv. Space Res. 5, 59-68.CrossRefGoogle Scholar
Singer, R. B. and Roush, T. L. (1985) Effects of temperature on remotely sensed mineral absorption features. J. Geophys. Res. 90, 12434-44.CrossRefGoogle Scholar
Singer, R. B. and Roush, T. L., McCord, T. B., Clark, R. N., Adams, J. B. and Huguenin, R. L. (1979) Mars surface composition from reflectance spectroscopy: a summary. Ibid. 84, 8415-26.CrossRefGoogle Scholar
Smith, J. V. (1979) Mineralogy of the planets: a voyage in space and time. Mineral. Mag. 43, 1-89.CrossRefGoogle Scholar
Smith, W. C. (1969) Arthur Francis Hallimond (1890-1968). Ibid. 37, 313-6.Google Scholar
Solberg, T. C. and Burns, R. G. (1988) Mössbauer spectra of weathered stony meteorites relevant to oxidation on Mars. I Chondrites. II. Achondrites and SNC meteorites. Lunar Planet. Sci. XIX, 146-7 and 1103-4.Google Scholar
Steffen, G., Langer, K. and Seifert, F. (1988) Polarized absorption spectra of synthetic (Mg, Fe)-orthopyroxenes, ferrosilite and Fe3+-bearing ferrosilite. Phys. Chem. Minerals, 16, 120-9.CrossRefGoogle Scholar
Sung, C.-M., Abu-Eid, R. M. and Burns, R. G. (1974) Ti3+/Ti4+ ratios in lunar pyroxenes: implications to depth of origin of mare basalt magma. Proc. Lunar Sci Conf., 5th 1, 717-26.Google Scholar
Sung, C.-M., Abu-Eid, R. M. and Burns, R. G., Singer, R. B., Parkin, K. M. and Burns, R. G. 1977) Temperature dependence of Fe2+ crystal field spectra: implications to mineralogical mapping of planetary surfaces. Ibid. 8th, 1063-79.Google Scholar
Vaughan, D. J. and Burns, R. G. (1973) Low oxidation states of Fe and Ti in the Apollo 17 orange soil. EOS Trans., A G U 54, 618-20.Google Scholar
Vaughan, D. J. and Burns, R. G. and Burns, R. G. (1977) Electronic absorption spectra of lunar minerals. Phil. Trans. R. Soc. London A. 285, 24-58.Google Scholar
White, W. B. and Keester, K. L. (1966) Optical absorption spectra of iron in the rock-forming silicates. Am. Mineral. 51, 774-91.Google Scholar