Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:35:53.044Z Has data issue: false hasContentIssue false

Sodalite-group minerals from the Somma Vesuvius volcanic complex, Italy: a case study of K-feldspar-rich xenoliths

Published online by Cambridge University Press:  05 July 2018

G. Balassone*
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Napoli Federico II, Via Mezzocannone 8, I—80134 Napoli, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Universitá Roma Tre, Largo San Leonardo Murialdo 1, I-00146 Roma, Italy
A. Mormone
Affiliation:
INGV, Osservatorio Vesuviano, Via Diocleziano, I-80124 Napoli, Italy
C. Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy
M. Pasero
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy
C. Petti
Affiliation:
Centro Museale “Musei delle Scienze Naturali”, Universitá di Napoli Federico II, Via Mezzocannone 8, I—80134 Napoli, Italy
N. Mondillo
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Napoli Federico II, Via Mezzocannone 8, I—80134 Napoli, Italy
G. Fameli
Affiliation:
ENEA Research Centre, Localitá Granatello, I-80055 Portici, Italy
*

Abstract

Sodalites and sulfatic sodalites in holocrystalline K-feldspar-rich ejecta from the Somma Vesuvius volcanic complex, Italy, have been characterized by combined chemical, structural and spectroscopic analyses. Sodalite has a relatively homogeneous chemical composition, with the ubiquitous presence of CO32– and H2O/OH. The sulfatic sodalites are isomorphous and have cage structures which can contain a wide variety of anions, molecular species and cations. Molecular CO2 and H2O/OH are present in sulfatic sodalites, instead of the CO32– anions that are present in sodalite sensu stricto. The cell dimensions of the all of the studied sodalite samples are very similar, the sulfatic sodalite cell dimensions are more variable. Structure refinement of a distinctly green sample confirms the P3n space group. Metasomatic magma-derived fluids that are rich in H2O, CO2, Cl and S are believed to be responsible for the genesis of the relatively late-stage phases which form the ejecta containing the sodalite-group minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antao, S.M., Hassan I., Wang J., Lee, P.L. and Toby, B.H. (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. The Canadian Mineralogist, 46, 15011509.CrossRefGoogle Scholar
Ayuso, R.A., de Vivo, B., Rolandi, G., Seal, R. II and Paone, A. (1998) Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. Journal of Volcanology and Geothermal Research, 82, 5378.CrossRefGoogle Scholar
Balassone, G., Biagioni, C., Fameli, G., Mormone, A., Pasero, M. and Petti, C. (2009) Characterization of sodalites from sanidinite rocks of Somma-Vesuvius (Italy). Abstracts of the 38th Congresso Nazionale Associazione Italiana di Cristallografia, Salerno, September 2023.Google Scholar
Ballirano, P. and Maras, A. (2005) Crystal chemical and structural characterization of an unusual CO3-bearing sodalite-group mineral. European Journal of Mineralogy, 17, 805812.CrossRefGoogle Scholar
Belkin, H.E., Tarzia, M. and de Vivo, B. (2010) Formation of chlorine-and sulphur-bearing feldspathoids (sodalite, scapolite and cancrinite) from silicate melt and aqueous fluid in alkali-syenite cumulate nodules from the Breccia Museo Formation, Campi Flegrei, southern Italy. IMA 2010, Budapest, August 2127.Google Scholar
Bellatreccia, F., Della Ventura, G., Williams, C.T., Lumpkin, G.R., Smith, K.L. and Colella, M. (2002) Non-metamict zirconolite polytypes from the feldspathoid-bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). European Journal of Mineralogy, 14, 809820.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Ottolini, L., Libowitzky, E. and Beran, A. (2005) The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study. Physics and Chemistry of Minerals, 32, 6576.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Piccinini, M., Cavallo, A., and Brilli, M. (2009) H2O and CiO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study. Mineralogical Magazine, 73, 399413.CrossRefGoogle Scholar
Beran, A., Talla D., Losos, Z. and Pinkas, J. (2010) Traces of structural H2O molecules in baryte. Physics and Chemistry of Minerals, 37, 159166.CrossRefGoogle Scholar
Bonaccorsi, E. and Merlino S. (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H phases. Pp. 241290. in: Micro-and mesoporous mineral phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Burragato, F., Maras, A. and Rossi, A. (1982) The sodalite group minerals in the volcanic areas of Latium. Neues Jahrbuch für Mineralogie, Monatshefte, H10, 433445.Google Scholar
Cigolini, C. (2007) Petrography and thermobarometry of high-pressure ultramafic ejecta from Mount Vesuvius, Italy: inferences on the deep feeding system. Periodico di Mineralogia, 76, 524.Google Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussman, J. (2004) Rock-forming minerals-Framework silicates: silica minerals, feldspathoids and the zeolites, Volume 4 Geological B. Society of London, London, 982 pp.Google Scholar
Della Ventura, G., Di Lisa, A., Marcelli, M., Mottana, A. and Paris, E. (1992) Composition and structural state of alkali feldspars from ejecta in the Roman potassic province, Italy: petrological implications. European Journal of Mineralogy, 4, 411424.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F. and Bonaccorsi, E. (2005) CiO2 molecules in pitiglianoite, a mineral of the cancrinite-sodalite group. European Journal of Mineralogy, 17, 847851.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F. and Piccinini, M. (2008a) Channel CiO2 in feldspathoids: a review of existing data and new perspectives. Rendiconti Accademia Lincei, 19, 141159.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F. and Piccinini, M. (2008b) Presence and zoning of hydrous components in leucite from the Albani Hills volcano (Rome, Italy). American Mineralogist, 93, 15381544.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Cesare, B., Harley, S. and Piccinini, M. (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: application to mineral and melt devolatilization. Lithos, 113, 498506.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Marcelli, A., Cestelli Guidi, M., Piccinini, M., Cavallo, A., Piochi, M. (2010) Application of micro-FTIR imaging in the Earth sciences. Analytical and Bioanalytical Chemistry, 397, 20392049.CrossRefGoogle ScholarPubMed
Depmeier, W. and Bührer, W. (1991) Aluminate sodalites: Sr8[Al12O24](MoO4)(SAM) at 293, 423, 523, 623 and 723K and Sr8[Al12O24](WO4)(SAW) at 293K. Acta Crystallographica, B47, 197206.CrossRefGoogle Scholar
Depmeier, W. (2005) The sodalite family-a simple but versatile framework structure. Pp. 203240. in: Micro-and mesoporous mineral phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Di Muro, A., Bonaccorsi, E. and Principe, C. (2004) Complex colour and chemical zoning of sodalitegroup phases in haüynophyre lava from M. Vulturet, Italy. Mineralogical Magazine, 68, 591614.CrossRefGoogle Scholar
Di Renzo, V., Di Vito, M.A., Arienzo, I., Carandente, A., Civetta, L., D’Antonio, M., Giordano, F., Orsi, G. and Tonarini, F. (2007) Magmatic history of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). Journal of Petrology, 48, 753784.CrossRefGoogle Scholar
Federico, M. and Peccerillo, A. (2002) Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano (Central Italy). Mineralogy and Petrology, 74, 223252.CrossRefGoogle Scholar
Fine, G. and Stolper, E. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contributions to Mineralogy and Petrology, 91, 105121.CrossRefGoogle Scholar
Fleet, M.E., Liu, X., Harmer, S.L. and Nesbitt, H.W. (2005) Chemical state of sulfur in natural and synthetic lazurite by S K-edge XANES and X-ray photoelectron spectroscopy. The Canadian Mineralogist, 43, 15891603.CrossRefGoogle Scholar
GE Inspection Technologies (2004) RayfleX-Version 2.336. GE Inspection Technologies, Germany.Google Scholar
Genge, M.J., Jones, A.P. and Price, G.D. (1995) An infrared and Raman study of carbonate glasses: implications for the structure of carbonatite magmas. Geochimica et Cosmochimica Acta, 59, 927937.CrossRefGoogle Scholar
Gilg, A.H., Lima, A., Somma, R., Belkin, H.E., de Vivo, B. and Ayuso, R.A. (2001) Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineralogy and Petrology, 73, 145176.CrossRefGoogle Scholar
Grapes, R.H. (2006) Pyrometamorphism. Springer Verlag, Heidelberg, Germany, 365 pp.Google Scholar
Hassan, I. and Buseck, P.R. (1989) Incommensuratemodulated structure of nosean, a sodalite-group mineral. American Mineralogist, 74, 394410.Google Scholar
Hassan, I. and Grundy, H.D. (1984) The crystal structure of sodalite-group minerals. Acta Crystallographica, B40, 613.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1986) The structure of nosean, ideally Na8[Al6Si6O24]SO4·H2O. The Canadian Mineralogist, 27, 165172.Google Scholar
Hassan, I. and Grundy, H.D. (1991) The crystal structure of haüyne at 293 and 153 K. The Canadian Mineralogist, 29, 123130.Google Scholar
Henderson, W.A., Jr, Richards, R.P. and Howard, D.G. (2000) Elongated twins of sodalite and other isometric minerals. The Mineralogical Record, 31, 141151.Google Scholar
Hermes, D.O. and Cornell, W.C. (1978) Petrochemical significance of xenolithics nodules associated with potash-rich lavas of Somma-Vesuvius volcano. NFS final technical report, University of Rhode Island, USA.Google Scholar
Hogarth, D.D. and Griffin, W.L. (1976) New data on lazurite. Lithos, 9, 3945.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jandel Scientific (1995) PeakFit-Peak separation and analysis software for Windows. Jandel Scientific, San Rafael, California, USA.Google Scholar
Ji, W., Li, M., Zeng, C., Yao, J. and Zhang, L. (2011) Hollow sodalite spheres synthesized in a first-closed then-open system from the synthesis gels aged under ultrahigh pressure. Microporous and Mesoporous Materials, 143, 189195.CrossRefGoogle Scholar
Joron, J.L., Métrich, N., Rosi, M., Santacroce, R. and Sbrana, A. (1987) Somma-Vesuvius-Chemistry and Petrography. Pp 105174. in: Somma-Vesuvius (Santacroce R., editor). CNR Quaderni della Ricerca Scientifica 114, volume 8.Google Scholar
Le Maitre, R.W. (editor) (2002) Igneous rocks. A classification and glossary of terms, second edition. Cambridge University Press, Cambridge, UK, 236 pp.CrossRefGoogle Scholar
Lessing, P. and Grout, M.C. (1971) Haüynitite from Edwards, New York. American Mineralogist, 56, 10961100.Google Scholar
Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319327.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration of water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Liebau, F. (2003) Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation and systematic classification. Microporous and Mesoporous Materials, 58, 1572.CrossRefGoogle Scholar
Merlino, S. (1984) Feldspathoids: their average and real structures. Pp. 435470. in: Feldspars and Feldspathoids (W.L Brown, editor). Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Natarajan, V., Subramanian, C. and Ramasamy, P. (1988) The hollow morphology of solution grown triglycine sulfate-phosphate crystals. Journal of Material Science, 7, 511512.Google Scholar
North, A.C.T., Phillips, D.C., and Mathews, F.S. (1968) A semi-empirical method of absorption correction. Acta Crystallographica, A24, 351359.CrossRefGoogle Scholar
Nose, K.W. (1808) Mineralogische Studien über die Gebirge am Niederrhein. Nach der Handschrift eines Privatisirenden herausgegebem von Johann Jakob Nöggerath. Frankfurt, Germany.Google Scholar
Ostroumov, M., Fritsch, E., Faulques, E. and Chauver, O. (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. The Canadian Mineralogist, 40, 885893.CrossRefGoogle Scholar
Peccerillo, A. (2005) Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics. Springer, Heidelberg, Germany, 365 pp.Google Scholar
Petti, C., Balassone, G., Bernardi, A.M., Mormone, A., Rossi, M. and Ghiara, M.R. (2010) Ejected rocks from the 1872 eruption of Vesuvius, Italy: a petrographic and mineralogical overview. Periodico di Mineralogia, 79, 125.Google Scholar
Plyler, E.K. (1929) The near infra-red absorption spectra of calcite and strontianite. Physical Review, 33, 948951.CrossRefGoogle Scholar
Renzulli, A., Upton, B.G.J. and Nappi, G. (1995) Magma chamber processes preceding the Pitigliano Formation eruption (Latera volcanic complex, central Italy): evidence from cognate plutonic clasts. Acta Vulcanologica, 7, 5574.Google Scholar
Renzulli, A., Upton, B.G.J., Boyce, A. and Ellam, R.M. (1998) Petrology of quartz syenite and haüyne syenite clasts from the Pitigliano Formation, Latera caldera, Vulsini District, Central Italy. European Journal of Mineralogy, 10, 333354.CrossRefGoogle Scholar
Rolandi, G., Munno, R. and Postiglione, A. (2004) The 427 eruption A.D. of Somma volcano. Journal of Volcanology and Geothermal Research, 129, 291319.CrossRefGoogle Scholar
Russo, M. and Punzo, I. (2004) I minerali del Somma-Vesuvio. AMI, Cremona, Italy, 320 pp.Google Scholar
Schroeder, R.A., Weir, C.E. and Lippincott, E.R. (1962) Lattice frequencies and rotational barriers for inorganic carbonates and nitrates from low temperature infrared spectroscopy. Journal of Research of the National Bureau of Standards, 66A, 407434.CrossRefGoogle Scholar
Sevink, J., Van Bergen, M.J., van der Plicht, J., Feiken, H., Anastasia, C. and Huizinga, A. (2011) Robust date for the Bronze Age Avellino eruption (Somma-Vesuvius): 3945-10 calBP (1995-10 calBC). Quaternary Science Review, 30, 10351046.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Solone, R. (2002) Caratteristiche mineralogiche e petrologiche di proietti intrusivi e metasomatici del Somma-Vesuvio. Unpublished thesis, Università di Napoli Federico II, Italy, 89 pp.Google Scholar
Sokolova, E.V., Rybakov, V.B. and L.A., Pautov (1991) Crystal structure of a new natural tetramethylammonium aluminosilicate [N(CH3)4][Si2(Si0.5Al0.5)O6]2 . Doklady Academii Nauk SSSR, 317, 884887.Google Scholar
Taylor, D. (1967) The sodalite group of minerals. Contributions to Mineralogy and Petrology, 16, 172188.CrossRefGoogle Scholar
Van Peteghem, J.K. and Burley, B.J. (1963) Studies on solid solution between sodalite, nosean and haüyne. The Canadian Mineralogist, 7, 808813.Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wulff-Pedersen, E., Neuman, E., Burke, E.A.J., Vannucci, R., Bottazzi, P., Ottolini, L., Gjonnes, J. and Hansen, V. (2000) Origin and structural character of haüyness in spinel dunite xenoliths from La Palma, Canary Islands. American Mineralogist, 85, 13971405.CrossRefGoogle Scholar
Zambonini, F. (1910) Mineralogia Vesuviana. Atti della Regia Accademia delle Scienze, Napoli, Serie II, 14, 1368.Google Scholar
Zambonini, F. (1935) Mineralogia Vesuviana. Rendiconti Regia Accademia Di Scienze Fisiche Matematiche e Naturali, Napoli, 20, 1463.Google Scholar
Zheng, Z., Guliants, V.V. and Misture, S. (2009) Sodalites as ultramicroporous frameworks for hydrogen separation at elevated temperatures: thermal stability, template removal, and hydrogen accessibility. Journal of Porous Materials, 16, 343347.CrossRefGoogle Scholar
Supplementary material: File

Balassone et al. supplementary material

CIF sample for sample S5F

Download Balassone et al. supplementary material(File)
File 24.3 KB