Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T09:10:43.576Z Has data issue: false hasContentIssue false

A single crystal, linearly polarized Fe 2p X-ray absorption study of gillespite

Published online by Cambridge University Press:  05 July 2018

P. F. Schofield
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
G. van der Laan
Affiliation:
Synchrotron Radiation Department, Daresbury Laboratory, Warrington WA4 4AD, UK
C. M. B. Henderson
Affiliation:
Synchrotron Radiation Department, Daresbury Laboratory, Warrington WA4 4AD, UK Department of Earth Science, University of Manchester, Manchester M13 9PL, UK
G. Cressey
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

The Fe 2p X-ray absorption spectra of single crystal gillespite, BaFeSi4O10, show a strong linear dichroism, i.e. a large difference in the absorption when measured with the polarization of the X-rays either parallel or perpendicular to the plane of the FeO4 group. The isotropic spectrum, obtained from measurement at the ‘magic angle’, and the polarization dependent spectra have been compared to atomic multiplet calculations and show an excellent agreement with theory. Analysis of the branching ratio, the linear dichroism, and the detailed peak structure confirms that the 5A1 level is the ground state at room temperature and pressure. The 5B2 level is sufficiently low in energy that a distortion of the electronic charge density, induced by increased pressure, may result in a 5B2 ground state.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Eid, R.M., Mao, H.K. and Burns, R.G. (1973) Polarized absorption spectra of gillespite at high pressure. Carnegie Institute Washington Year Book 73, 564–7.Google Scholar
Carra, P., Konig, H., Thole, B.T. and Altarelli, M. (1993) Magnetic X-ray dichroism. Physica B Condensed Matter, 192, 182–90CrossRefGoogle Scholar
Cressey, G., Henderson, C.M.B. and van der Laan, G. (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys. Chem. Mineral., 20, 111–9.CrossRefGoogle Scholar
de Groot, F.M.F., Figueiredo, M.O., Basto, M.J., Abbate, M., Petersen, H. and Fuggle, J.C. (1992) 2p X-ray absorption of titanium in minerals. Phys. Chem. Mineral., 19, 140–7.CrossRefGoogle Scholar
Flipse, C.F.J., van der Laan, G., Thole, B.T. and Myhra, S. (1993) Polarized x-ray absorption study of Bi2Sr,2CuO6 and Bi2Sr2CaCu2O8 . Zeits. für Physik B, 90, 8991.Google Scholar
Hazen, R.M. and Burnham, C.W. (1974) The crystal structures of gillespite I and II; a structure determination at high pressure. Amer. Mineral., 59, 1166–76.Google Scholar
Hazen, R.M. and Finger, L.W. (1983) High-temperature and high-pressure crystallographic study of the gillespite I-II phase transition. Amer. Mineral., 68, 595603.Google Scholar
Henderson, C.M.B., Cressey, G. and Redfern, S.A.T. (1995) Geological applications of synchrotron radiation. Radiation Physics and Chemistry, 45, 459–81.CrossRefGoogle Scholar
Huggins, F.E., Mao, H.K. and Virgo, D. (1975) Mossbauer studies at high pressure using the diamond anvil cell. Carnegie Institute Washington Year Book, 74, 405–10.Google Scholar
Huggins, F.E., Mao, H.K. and Virgo, D. (1976) Gillespite at high pressure: results of a detailed Mossbauer study. Carnegie Institute Washington Year Book, 75, 756–8.Google Scholar
Kuiper, P., Searle, B.G., Rudolf, P., Tjeng, L.H. and Chen, C.T. (1993) X-ray magnetic dichroism of antiferromagnetic Fe2O3: The orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy. Phys. Rev. Letters, 70, 1549–52.CrossRefGoogle Scholar
Lynch, D.W. and Cowan, R.D. (1987) Effect of hybridization on 4d-4f spectra in light lanthanides. Physics Review, B, 36, 9228–33.CrossRefGoogle ScholarPubMed
Mackey, D.J., McMeeking, R.F. and Hitchman, M.A. (1979) Magnetic anisotropy and electronic structure of gillespite, a mineral containing planar,four-coordinate, high-spin iron. J. Chem. Soc. Dalton, 299305.CrossRefGoogle Scholar
Mythen, C.S., van der Laan, G. and Padmore, H.A. (1992) The undulator beamline at the SRS Daresbury. Review of Scientific Instrumentation , 63, 1313–6.CrossRefGoogle Scholar
Pabst, A. (1943) Crystal structure of gillespite, BaFeSi4O10 . Amer. Mineral., 28, 372–90.Google Scholar
Redfern, S.A.T., Clark, S.M. and Henderson, C.M.B. (1993) High-pressure ferroelastic phase transition in gillespite: new evidence from energy-dispersive diffraction. Material Science Forum, 133–6, 615–20.CrossRefGoogle Scholar
Schaller, W.T. (1922) Gillespite, a new mineral. J. Washington Academy of Science, 12, 78.Google Scholar
Schofield, P.F., Henderson, C.M.B., Redfern, S.A.T. and van der Laan, G. (1993) Cu ) 2p X-ray absorption spectroscopy as a probe for the site occupancy of (ZnxCu1-x)WO4 solid solution. Phys. Chem. Mineral., 20, 375–81.CrossRefGoogle Scholar
Schofield, P.F., Henderson, C.M.B., Cressey, G. and van der Laan, G. (1995) 2p X-ray absorption spectroscopy in the earth sciences. J. Synchrotron Radiation, 2, 93–8.CrossRefGoogle ScholarPubMed
Strens, R.G. (1966) Pressure-induced spin-pairing in gillespite BaFe(II)Si4O10 . Chemical Communications, 21, 777–8Google Scholar
Templeton, D.H. and Templeton, L.K. (1982) X-ray dichroism and polarized anomalous scattering of the uranyl ion. Acta Cryst., A32, 62–7.CrossRefGoogle Scholar
Thole, B.T. and van der Laan, G. (1988) Branching ratio in X-ray absorption spectroscopy. Phys. Rev., B., 38, 3158–71.CrossRefGoogle ScholarPubMed
Thole, B.T. and van der Laan, G. (1993) Sum rules for magnetic dichroism in rare earth 4f photoemission. Phys. Rev. Letters, 70, 2499–502.CrossRefGoogle ScholarPubMed
van der Laan, G. and Kirkman, I.W. (1992) The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J. Phys.: Condensed Matter, 4, 4189–204.Google Scholar
van der Laan, G. and Thole, B.T. (1991) Strong magnetic x-ray dichroism in 2p absorption spectra of 3d transition metal ions, Phys. Rev., B, 43, 13401–11.CrossRefGoogle ScholarPubMed
van der Laan, G. (1994) Sum rules and fundamental spectra of magnetic x-ray dichroism in crystal field symmetry. J. Phys. Soc. Japan, 63, 2393–400.CrossRefGoogle Scholar
van der Laan, G., Schofield, P.F., Cressey, G. and Henderson, C.M.B. (1996) Natural linear dichroism at the Fe 2p absorption edge of gillespite. Chem. Phys. Letters, 252, 272–6.CrossRefGoogle Scholar
van der Laan, G., Thole, B.T. and Sawatzky, G.A. (1988) Multiplet structure in the L2,3 X-ray absorption spectra: A fingerprint for high- and low-spin Ni2+ compounds. Phys. Rev., B, 37, 6587–9.CrossRefGoogle ScholarPubMed
van der Laan, G., Thole, B.T., Sawatzky, G.A., Goedkoop, J.B., Fuggle, J.C., Esteva, J.M., Karnatak, R.C., Remeika, J.P. and Dabkowska, H.A. (1986) Experimental proof of magnetic X-ray dichroism. Phys. Rev., B, 34, 6529–31.CrossRefGoogle ScholarPubMed
Wainright, J.E. (1969) Reinvestigation of the crystal structure of gillespite. Canad. Mineral., 10, 148.Google Scholar
Waychunas, G.A. and Brown, G.E. Jr. (1990) Polarized X-ray absorption spectroscopy of metal ions in minerals. Phys. Chem. Mineral., 17, 420–30.CrossRefGoogle Scholar
Yamaguchi, T., Shibuya, S., Suga, S. and Shin, S. (1982) Inner-core excitation spectra of transition-metal compounds: II. p-d absorption spectra. J. Phys., C: Solid State Physics, 15, 2641–50.CrossRefGoogle Scholar