Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T23:34:56.116Z Has data issue: false hasContentIssue false

Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites

Published online by Cambridge University Press:  05 July 2018

R. A. D. Pattrick
Affiliation:
Department of Geology, The University, Manchester M13 9PL
A. J. Hall
Affiliation:
Department of Applied Geology, University of Strathclyde, Glasgow

Abstract

The limits and effect on cell size of silver substitution into synthetic tetrahedrite, Cu10(Zn,Fe,Cd2) Sb4S13, are investigated for comparison with natural tetrahedrite. The limit of Ag substitution into natural zincian tetrahedrite is ∼ 4 atoms per half unit cell and into iron tetrahedrite ∼ 6.5 atoms (with rare exceptions). The cell size of natural tetrahedrite increases with increasing Ag content up to 4 atoms but decreases with further Ag substitution. The highest Ag substitution achieved in synthetic tetrahedrites was 4.7 atoms in Zn2-tetrahedrite, 7.02 atoms in Cd2-tetrahedrite and 6.80 atoms in Fe2-tetrahedrite. The cell size of synthetic tetrahedrites shows a continuous increase with increasing Ag content, the largest cell size of a = 10.927 Å being in the Cd2-tetrahedrite with 7.02 atoms Ag. The iron content of tetrahedrite systematically increased from 1.1 to 2.0 atoms per half unit cell tetrahedrite with increase from 0 to ∼ 4 atoms Ag. The different limit of Ag substitution between Zn2 and Cd2 tetrahedrite can be explained by size constraints on the expanding structure. An explanation is given for a limit of 7 atoms Ag substitution in tetrahedrite using a combined electron band/molecular orbital approach.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atanasov, V. A. (1975) Mineral. Mag. 40, 233–7.CrossRefGoogle Scholar
Boldyreva, M. M., and Borodayev, Yu. S. (1973) Dokl. Acad. Nauk. SSSR. 212, 1424–5.Google Scholar
Bernhard, J. H. (1957) Rozpravy ČSAV roč. ses. 3, Praha.Google Scholar
Bishop, A. G. Criddle, A. J., and Clark, A. M. (1977) Mineral. Mag. 41, 5963.CrossRefGoogle Scholar
Cambi, L., and Elli, M. (1965) Chim. Ind. (Milan), 47, 282–90.Google Scholar
Charlat, M. and Levy, C. (1974) Bull. Soc. fr. Mineral. Crystallogr. 97, 241–50.Google Scholar
Charlat, M. and Levy, C. (1975) Ibid. 98, 152–8.Google Scholar
Hall, A. J. (1971) Unpubl. Ph.D. thesis, University of Durham.Google Scholar
Hall, A. J. (1972) Bull. Soc.fr. Mineral. Crystallogr. 95, 583–94.Google Scholar
Hall, A. J. Cerve“e., B., and Levy, C. (1974) Ibid. 97, 1826.Google Scholar
Imai, N. and Le, H. K. (1980) In Complex Sulphide Ores. Inst. Mining Metall. 248–59.Google Scholar
Indolev, L. N., Nevoysa, G. G., and Bryzgalov, I. A. (1971) Dokl. Akad. Nauk SSSR. 199, 1146–9.Google Scholar
Johnson, M. L., and Jeanloz, R. M. (1983) Am. Mineral. 68, 220–6.Google Scholar
Kalbskopf, R. A. (1971) Tschermaks Mineral. Petrog. Mitt. 16, 173–5.CrossRefGoogle Scholar
Kalbskopf, R. A. (1972) Ibid. 18, 147–55.Google Scholar
Karup-Møller, S. (1974) Neues Jahrb. Mineral. Abh. 122, 291313.Google Scholar
Keighin, C. W., and Honea, R. M. (1969) Mineral. Deposita. 4, 153–71.CrossRefGoogle Scholar
Kvacek, M., Novak, F., and Drabek, M. (1975) Neues Jahrb. Mineral. Mh. 171–9.Google Scholar
Luce, F. D., Tuttle, C. L., and Skinner, B. J. (1977) Econ. Geol. 72, 271–89.CrossRefGoogle Scholar
Machatschki, F. (1928) Norsk. Geol Tidsskr. 10, 2332.Google Scholar
Makovicky, E., and Skinner, B. J. (1978) Can. Mineral. 16, 611–24.Google Scholar
Makovicky, E., (1979) Ibid. 17, 619–34.Google Scholar
Maske, S., and Skinner, B. J. (1971) Econ. Geol. 66, 901–18.CrossRefGoogle Scholar
Mozgova, N. N., Tsepin, A. I., Ozerova, N. A., Bortnikov, N. S., and Tronieva, N. V. (1979) Zap. Vses. Mineral. Obshch. 108, 437–53.Google Scholar
Novgorodova, M. I., Tsepin, A. I., and Dmitrieva, M. T. (1978) Ibid. 107, 100–10.Google Scholar
Oen, I. S., and Kiefe, C. (1976) Neues Jahrb. Mineral. Mh. 94–6.Google Scholar
Patterson, J. M. (1970) Unpubl. Ph.D thesis, University of London.Google Scholar
Pattrick, R. A. D. (1978) Mineral. Mag. 42, 286–8.CrossRefGoogle Scholar
Pattrick, R. A. D. (1981) Unpubl. Ph.D. thesis, University of Strathclyde.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn. Cornell University Press, New York.Google Scholar
Pauling, L. (1960) and Huggins, M. L. (1934) Acta. Crystallogr. B34, 746–52.Google Scholar
Pauling, L. (1960) and Neuman, E. W. (1934) Z. Kristallogr. 88, 5462.Google Scholar
Petruk, W. (1971) Can. Mineral. 11, 196231.Google Scholar
Riley, J. F. (1974) Mineral. Deposita. 9, 117–24.CrossRefGoogle Scholar
Skinner, B. J., Luce, F. D., and Makovicky, E. (1972) Econ. Geol. 67, 924–38.CrossRefGoogle Scholar
Springer, G. (1969) Neues Jahrb. Mineral. Mh. 2432.Google Scholar
Steed, G. M. (1975) Unpubl. Ph.D. thesis, University of London.Google Scholar
Sugaki, A., Shima, H., and Kitakaze, A. (1975) Prof. T. Takeuchi Memorial Vol. 6372 (English abstract).Google Scholar
Tatsuka, K., and Morimoto, N. (1973) Am. Mineral. 58, 425–34.Google Scholar
Tatsuka, K., (1977) Ibid. 62, 1101–8.Google Scholar
Timofeyevskiy, D. A. (1967) Dokl. Akad. Nauk SSSR. 176, 1388–91.Google Scholar
Vaughan, D. J., and Burns, R. G. (1972) 24th Int. Geol. Congr. 14, 158–67.Google Scholar
Wedepohl, K. H. (ed.) (1969) Handbook of Geochemistry, Springer-Verlag.CrossRefGoogle Scholar
Wuensch, B. J. (1964) Z. Kristallogr. 119, 437–53.CrossRefGoogle Scholar
Wuensch, B. J., Tackeuchi, Y., and Nowacki, W. (1966) Ibid. 123, 1-20.Google Scholar