Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:48:36.891Z Has data issue: false hasContentIssue false

Silicate–carbonate liquid immiscibility and crystallization of carbonate and K-rich basaltic magma: insights from melt and fluid inclusions

Published online by Cambridge University Press:  05 July 2018

I. P. Solovova*
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny per. 35, Moscow 119017, Russia
A. V. Girnis
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny per. 35, Moscow 119017, Russia
*

Abstract

This paper reports an investigation of the crystallization products of K-rich silicate and carbonate melts trapped as melt inclusions in clinopyroxene phenocrysts from the Dunkeldyk alkaline igneous complex in the Tajik Republic. Heating experiments on the melt inclusions suggest that the carbonate melt was formed by liquid immiscibility at 1180°C and ∼0.5 GPa. The carbonate-rich inclusions are dominated by Sr-bearing calcite, and rich in incompatible elements. Most of the silicate minerals are SiO2-poor and rich in K, Ba and Ti. Leucite, kalsilite and aegirine are the earliest magmatic minerals. High Ba and Ti contents in the melt resulted in the crystallization of Ba-rich K-feldspar, titanite, perovskite and Ti-bearing garnet, and the rare Ba-Ti silicates fresnoite and delindeite. The last minerals to crystallize from volatile-rich melts and fluids were aegirine, götzenite, K-Ba- and Ca-Sr-bearing zeolites, fluorite and strontium-rich baryte. Interaction of the early minerals with residual melts and fluids produced Ba-rich phlogopite and Sr-rich apatite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfors, J.T., Stinson, M.C. and Matthews, R.A. (1965) Seven new barium minerals from eastern Fresno County, California. American Mineralogist, 50, 314340.Google Scholar
Altherr, R., Meyer, H.-P., Holl, A., Volker, F., Alibert, C., McCulloch, M.T. and Majer, V. (2004) Geochemical and Sr-Nd-Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia). Contributions to Mineralogy and Petrology, 147, 5873.CrossRefGoogle Scholar
Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V. and Kononkova, N.N. (2007) Compositions of magmas, formation conditions, and genesis of carbonatebearing ijolites and carbonatites of the Belay Zima alkaline carbonatite complex, eastern Sayan. Petrology, 15, 551574.CrossRefGoogle Scholar
Appleman, D.E., Evans, H.T. Jr, Nord, G.L., Dwornik, E.J.. and Milton, C. (1987) Delindeite and lourenswalsite, two new titanosilicates from the Magnet Cove region, Arkansas. Mineralogical Magazine, 51, 417425.CrossRefGoogle Scholar
Ayers, J.C. and Watson, E.B. (1993) Apatite/fluid partitioning of rare-earth elements and strontium: experimental results at 1.0 GPa and 1000ºC and application to models of fluid-rock interaction. Chemical Geology, 110, 299314.CrossRefGoogle Scholar
Basu, A.R., Junwen, W., Wankang, H., Guanghong, X. and Tatsumoto, M. (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of Eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105, 149169.CrossRefGoogle Scholar
Boctor, N.Z. and Yoder, H.S. (1986) Petrology of some melilite-bearing rocks from Cape Province, republic of South Africa: relationship to kimberlites. American Journal of Science, 286, 513539.CrossRefGoogle Scholar
Brey, G.P. and Green, D.H. (1975) Solubility of CiO2 in olivine melilitite at high pressures and role of CiO2 in the Earth’s upper mantle. Contributions to Mineralogy and Petrology, 55, 217230.CrossRefGoogle Scholar
Capobianco, C. and Carpenter, M. (1989) Thermally induced changes in kalsilite (KAlSiO4). American Mineralogist, 74, 797811.Google Scholar
Carlier, G. and Lorand, J.-P. (2003) Petrogenesis of a zirconolite-bearing Mediterranean type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos, 69, 1535.CrossRefGoogle Scholar
Cundari, A. and Ferguson, A.K. (1994) Appraisal of the new occurrence of götzenite, khibinskite and apophyllite in kalsilite-bearing lavas from Pian di Celle and Cupaello (Umbria), Italy. Lithos, 31, 155161.CrossRefGoogle Scholar
Dmitriev, E.A. (1976) Cenozoic Potassium Alkaline Rocks of the Eastern Pamirs. Donish, Dushanbe [in Russian]. Dunworth, E.A. and Bell, K. (2003) The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ul t ramafic-alkaline-carbonatite intrusion. Mineralogical Magazine, 67, 423451.Google Scholar
Faiziev, A.P., Iskandarov, F.Sh. and Gafurov, F.G. (2000) Mineralogy, thermobarogeochemical conditions, and genesis of the Dunkeldyk rare earthfluorite deposit, Eastern Pamirs. Dushanbe, Humo [in Russian]. Ferraris, G., Ivaldi, G., Pushcharovsky, D.Y., Zubkova, N.V. and Pekov, I.V. (2001) The crystal structure of delindeite, Ba2 {(Na,K)3 (Ti, Fe) [Ti2(O,OH)4Si4O14](H2O,OH)2}, a member of the meroplesiotype bafertisite series. The Canadian Mineralogist, 39, 13071316.Google Scholar
Foley, S. and Peccerillo, A. (1992) Potassic and ultrapotassic magmas and their origin. Lithos, 28, 181185.CrossRefGoogle Scholar
Freestone, I.C. and Hamilton, D.L. (1980) The role of liquid immiscibility in the genesis of carbonatites-an experimental study. Contributions to Mineralogy and Petrology, 73, 105117.CrossRefGoogle Scholar
Girnis, A.V., Bulatov, V.K., Lahaye, Ya. and Brey, G.P. (2006) Partitioning of trace elements between carbonate-silicate melts and mantle minerals: experiment and petrological consequences. Petrology, 14, 492514.CrossRefGoogle Scholar
Gittins, J., Allen, C.R. and Cooper, A.F. (1975) Phlogopitization of pyroxenites; its bearing on the composition of carbonatite magmas. Geological Magazine, 112, 503507.CrossRefGoogle Scholar
Guzmics, T., Mitchell, R.H., Szabó, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contributions to Mineralogy and Petrology, 161, 177196.CrossRefGoogle Scholar
Hacker, B., Luffi, P., Lutkov, V. Minaev, V., Ratschbacher, L., Plank, T., Ducea, M., Patin˜o-Douce, A., McWilliams, M. and Metcalf, J. (2005) Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamirs. Journal of Petrology, 46, 16611687.CrossRefGoogle Scholar
Halama, R., Vennemann, T., Siebel, W. and Markl, G. (2005) The Grønnedal-Ika carbonatite-syenite complex, South Greenland: carbonatite formation by liquid immiscibility. Journal of Petrology, 46, 191217.CrossRefGoogle Scholar
Hamilton, D.L., Freestone, I.C., Dawson, J.B. and Donaldson, C.H. (1979) Origin of carbonatites by liquid immiscibility. Nature, 279, 5254.CrossRefGoogle Scholar
Hamilton, D.L., Bedson, P. and Esson, J. (1989) The behaviour of trace elements in the evolution of carbonatites. Pp. 405427. in: Carbonatites. Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Hansen, K. (1984) Rare earth abundances in Mesozoic undersaturated alkaline rocks from West Greenland. Lithos, 17, 7785.CrossRefGoogle Scholar
Henderson, C.M.B., Kogarko, L.N. and Plant, D.A. (1999) Extreme closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Mineralogical Magazine, 63, 433438.CrossRefGoogle Scholar
Hovis, G.L. and Roux, J. (1993) Thermodynamic mixing properties of nepheline-kalsilite crystalline solutions. American Journal of Science, 293, 11081127.CrossRefGoogle Scholar
Jarosevich, E., Nelen, J.A. and Norberg, J.A. (1979) Microprobe analyses of four natural glasses and one mineral: an interlaboratory study of precision and accuracy. Smithsonian Contributions to the Earth Sciences, 22, 6872.Google Scholar
Jones, J.H., Walker, D., Pickett, D.A., Murrell, M.T. and Beattie, P. (1995) Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids. Geochimica et Cosmochimica Acta, 59, 13071320.CrossRefGoogle Scholar
Kapustin, Yu.L. (1980a) Götzenite and wöhlerite from alkaline massifs of Sangilen (Tuva). Zapiski Vsesoyuznogo Mineralogical Obshestva, 87, 590597. [in Russian]. Kapustin, Yu.L. (1980b) Mineralogy of carbonatites. Amerind Publishing, New Delhi, India.Google Scholar
Keppler, H. (2003) Water solubility in carbonatite melts. American Mineralogist, 88, 18221824.CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of hyperagpaitic alkaline rocks. Clarendon Press, Oxford, UK. Kjarsgaard, B.A. (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. Journal of Petrology, 39, 20612075.Google Scholar
Kjarsgaard, B.A. and Hamilton, D. (1989) The Genesis of Carbonatites by Immiscibility. Pp 388404. in: Carbonatites. Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Kogarko, L.N., Plant, D.A. and Henderson, G.M.B. (1991) Na-rich carbonate inclusions in perovskite and calzirite from the Guli intrusive Ca-carbonatite, polar Siberia. Contributions to Mineralogy and Petrology, 109, 124129.CrossRefGoogle Scholar
Kwestroo, W. and Paping, H.A.M. (1959) The systems BaO-SrO-TiO2, BaO-CaO-T iO2, and SrO-CaO-TiO2. Journal of the American Ceramic Society, 42, 292299.CrossRefGoogle Scholar
Le Bas, A.R. and Aspden, J.A. (1981) The comparability of carbonatitic fluid inclusions in ijolites with natrocarbonatite lava. Bulletin of Volcanology, 44, 429438.CrossRefGoogle Scholar
Lee, W. and Wyllie, P.J. (1997) Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contributions to Mineralogy and Petrology, 127, 112.CrossRefGoogle Scholar
Lengauer, C.L., Tillmanns, E. and Hentschel, G. (2001) Batiferrite, Ba[Ti2Fe10]O19, a new ferrimagnetic magnetoplumbite-type mineral from the Quaternary volcanic rocks of the western Eifel area, Germany. Mineralogy and Petrology, 71, 119.CrossRefGoogle Scholar
Lutkov, V.S. (2003) Petrochemical evolution and genesis of a potassic pyroxenite-eclogite-granulite granulite association: mantle and crustal xenoliths in Neogene fergusites in the southern Pamirs, Tajikistan. Geochemistry International, 41, 224235.Google Scholar
Miller, C., Schuster, R., Klötzli, U., Frank, W. and Purtscheller, F. (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40, 13991424.CrossRefGoogle Scholar
Minarik, W.G. (1998) Complications to carbonate melt mobility due to the presence of an immiscible silicate melt. Journal of Petrology, 39, 19651973.CrossRefGoogle Scholar
Mitchell, R.H. (1997) Preliminary studies of the solubility and stability of perovskite group compounds in the synthetic carbonatite system calcite-portlandite. Journal of African Earth Sciences, 25, 147158.CrossRefGoogle Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1998) Instability of perovskite in a CiO2-rich environment: examples from carbonatite and kimberlite. The Canadian Mineralogist, 36, 939952.Google Scholar
Morbidelli, L., Gomes, C.B., Beccaluva, L., Brotzu, P., Conte, A.M., Ruberti, E. and Traversa, G. (1995) Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil. Earth-Science Reviews, 39, 135168.CrossRefGoogle Scholar
Panina, L.I. and Motorina, I.V. (2008) Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochemistry International, 46, 448464.CrossRefGoogle Scholar
Papale, P. (1997) Modeling of the solubility of a onecomponent H2O or CiO2 fluid in silicate liquids. Contributions to Mineralogy and Petrology, 126, 237251.CrossRefGoogle Scholar
Prowatke, S. and Klemme, S. (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, 70, 45134527.CrossRefGoogle Scholar
Putirka, K., Ryerson, H.M.F. and Show, H. (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 15421554.CrossRefGoogle Scholar
Quartieri, S., Boscherini, F., Chaboy, J., Dalconi, M.C., Oberti, R. and Zanetti, A. (2002) Characterization of trace Nd and Ce site preference and coordination in natural melanites: a combined X-ray diffraction and high-energy XAFS study. Physics and Chemistry of Minerals, 29, 495502.CrossRefGoogle Scholar
Rankin, A.H. and Le Bas, M.J. (1974) Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma. Nature, 250, 206209.CrossRefGoogle Scholar
Rensbo, J.G., Pedersen, A.K. and Engell, J. (1977) Titan-aegirine from Early Tertiary ash layers in northern Denmark. Lithos, 10, 193204.CrossRefGoogle Scholar
Roedder, E. (1951) The system K2O-MgO-SiO2; part 1. American Journal of Science, 249, 81130.CrossRefGoogle Scholar
Rosatelli, G., Stoppa, F. and Jones, A.P. (2000) Intrusive calcite-carbonatite occurrence from Mt. Vulture Volcano, Southern Italy. Mineralogical Magazine, 64, 615624.CrossRefGoogle Scholar
Sahama, Th.G. and Hytönen, K. (1957) Götzenite and combeite, two new silicates from the Belgian Congo. Mineralogical Magazine, 31, 503510.CrossRefGoogle Scholar
Sharygin, V.V. (1991) Chemical composition of melt inclusions in minerals of lamproites from the Ellendale field (Western Australia). Geologiya i geofizica, 32, 6473.Google Scholar
Sharygin, V.V. (2001) Silicate-carbonate liquid immiscibility in melt inclusions from melilitolite minerals: the Pian di Celle volcano (Umbria, Italy). Abstracts XVI ECROFI European Current Research on Fluid Inclusion, 399402.Google Scholar
Sharygin, V.V. (2010). The perovskite-brownmillerite series: perspectives for temperature estimation in Carich pyrometamorphic rocks. Abstracts 20th General Meeting, Internation Mineralogical Association (IMA-2010), Budapest, 444. Sharygin, V.V. and Bazarova, T.Yu. (1991) Crystallization of wyomingites of Leucite Hills, USA. Geologiya i geofizica, 32, 6168.Google Scholar
Sharygin, V.V., Stoppa, F. and Kolesov, B.A. (1996) Zr-Ti disilicates from the Pian di Celle volcano, Umbria, Italy. European Journal of Mineralogy, 8, 11991212.CrossRefGoogle Scholar
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P. and Kamenetsky, V.S. (2007) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. European Journal of Mineralogy, 19, 5163.CrossRefGoogle Scholar
Sobolev, A.V. and Batanova, V.G. (1995) Mantle lherzolites of the Troodos Ophiolite Complex, Cyprus island: geochemistry of clinopyroxene. Petrology, 3, 487495.Google Scholar
Sokolov, S. (2002) Melt inclusions as indicators of the magmatic origin of carbonatite rare metal and rare earth minerals. Chemical Geology, 183, 373378.CrossRefGoogle Scholar
Solovova, I.P., Girnis, A.V., Guzhova, A.V. and V.B., Naumov (1992) Igneous salt inclusions in the minerals of the alkali basaltoids of the east Pamirs. Geokhimiya, 1, 6877.Google Scholar
Solovova, I.P., Girnis, A.V. and I.D., Ryabchikov (1996) Inclusions of carbonate and silicate melts in minerals of alkali basaltoids from the East Pamirs. Petrology, 4. 319341.Google Scholar
Solovova, I.P., Ryabchikov, I.D., Kogarko, L.N. and Kononkova, N.N. (1998) Inclusions in minerals of the Palaborwa Carbonatite Complex, South Africa. Geochemistry International, 36, 377388.Google Scholar
Solovova, I.P., Girnis, A.V., Ryabchikov, I.D. and Kononkova, N.N. (2008) Origin of carbonatite magma during the evolution of ultrapotassic basite magma. Petrology, 16, 376394.CrossRefGoogle Scholar
Solovova, I.P., A.V., Girnis, Ryabchikov, I.D. and|Ryabchikov, I.D. and Kononkova, N.N. (2009) Mechanisms of formation of barium-rich phlogopite and strontium-rich apatite during the final stages of alkaline magma evolution. Geochemistry International, 47, 578591.CrossRefGoogle Scholar
Stoppa, F. and Cundari, A. (1995) A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contributions to Mineralogy and Petrology, 122, 275288.CrossRefGoogle Scholar
Stoppa, F., Rosatelli, G., Wall, F. and Jeffries, T. (2005) Geochemistry of carbonatite-silicate pairs in nature: a case history from Central Italy. Lithos, 85, 2647.CrossRefGoogle Scholar
Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313345. in: Magmatism in Ocean Basins (Saunders, A.D. and Norry, M.J., editors). Geological Society Special Publication, 42. The Geological Society, London, 398 pp.CrossRefGoogle Scholar
Troitzsch, U. and Ellis, D.J. (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4. Contributions to Mineralogy and Petrology, 142, 626.Google Scholar
Turner, S.P., Platt, J.P., George, M.M., Kelley, S.P., Pearson, D.G. and Nowell, G.M. (1999) Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. Journal of Petrology, 40, 10111036.CrossRefGoogle Scholar
Veksler, I.V., Nielsen, T.F.D. and Sokolov, S.V. (1998a) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. Journal of Petrology, 39, 20152031.Google Scholar
Veksler, I.V., Petibon, C., Jenner, G.A., Dorfman, A.M. and Dingwell, D.B. (1998b) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. Journal of Petrology, 39, 20952104.CrossRefGoogle Scholar
Verwoerd, W.J. (1978) Liquid immiscibility and the carbonatite-ijolite relationship: preliminary data on the join NaFe3+Si2O6-CaCO3 and related compositions. Carnegie Institute Washington, Yearbook, 77. Watson, E.B. (1980) Apatite and phosphorus in mantle source regions: an experimental study of apatite/melt equilibria at pressure to 25 kbar. Earth and Planetary Science, 5, 322325.Google Scholar
Watson, E.B. and Green, T.H. (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, 56, 405421.CrossRefGoogle Scholar
Wendlandt, R.F. and Harrison, W.J. (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CiO2 vapor: results and implications for the formation of light rare earth-enriched rocks. Contributions to Mineralogy and Petrology, 69, 409419.CrossRefGoogle Scholar
Williams, H.M., Turner, S.P., Pearce, J.A., Kelley, S.P. and Harris, N.B. (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology, 45, 555607.CrossRefGoogle Scholar
Wyllie, P.J. and Tuttle, O.F. (1960) The system CaO-CiO2-H2O and origin of carbonatites. Journal of Petrology, 1, 146.CrossRefGoogle Scholar
Yoder, H and Tilley, C. (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock system. Journal of Petrology, 3, 342532.CrossRefGoogle Scholar
Zimbelman, D.R., Rye, R.O. and Breit, G.N. (2005) Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chemical Geology, 215, 3760.CrossRefGoogle Scholar