Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:41:26.308Z Has data issue: false hasContentIssue false

Silicate melt inclusions from a mildly peralkaline granite in the Oslo paleorift, Norway

Published online by Cambridge University Press:  05 July 2018

T. H. Hansteen
Affiliation:
Mineralogical-Geological Museum, Sars Gate 1, N-0562 Oslo 5, Norway
W. J. Lustenhouwer
Affiliation:
Netherlands Organization for Scientific Research (NWO), the Free University, N-1007 MC Amsterdam, The Netherlands

Abstract

The mildy peralkaline Eikeren-Skrim granite belongs to the Permian magmatic province of the Oslo rift, south-east Norway. Euhedral quartz crystals from the abundant miarolitic cavities contain primary inclusions of partly crytallized silicate melts and coexisting primary, aqueous fluid inclusions. Micro-thermometric measurements give maximum estimates for the granite solidus of 685–705°C. Quenched silicate melt inclusions are not peralkaline, have normative Or/Ab weight ratios of 1.15–1.44 (compared to 0.49–0.80 in whole-rock samples) and F and Cl contents of 0.1 and 0.21–0.65 wt. %, respectively. Coexisting magmatic fluid inclusions are highly enriched in Na, Cl, S and to some extent K. These chemical characteristics are the results of late-magmatic melt-mineral-fluid interaction in the miarolitic cavities.

Type
Magmatic/metamorphic environment
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Nordic Volcanological Institute, University of Iceland, Geoscience Building, 101 Reykjavik, Iceland.

References

Andersen, T. (1981) En geokjemisk-petrologisk under-sökelse av de intrusive bergartene i Sande Cauldron, Oslofeltet. Unpubl. Cand. Real. thesis, Univ. of Oslo.Google Scholar
Andersen, T. (1984) Crystallization history of a Permian composite monzonite-alkali syenite pluton in the Sande cauldron, Oslo rift, southern Norway. Lithos, 17, 153-70.CrossRefGoogle Scholar
Bailey, D. K. (1969) The stability of acmite in the presence of H2O. Am. J. Sci. Schairer vol. 267A, 116.Google Scholar
Bailey, J. M. (1977) Fluorine in granitic rocks and melts: a review. Chem. Geol. 19, 1-42.CrossRefGoogle Scholar
Barth, T. F. W. (1945) Studies of the igneous rock complex of the Oslo Region. II. Systematic petrography of the plutonic rocks. Skr. Nor. Vitensk. Akad. Oslo I. (1944) 3, 1104.Google Scholar
Bowen, N. L. (1937) Recent high-temperature research on silicates and its significance in igneous geology. Am. J. Sci. 33, 11-21.Google Scholar
Brøgger, W. C. (1890) Die Mineralen der Syenitpegmatitgange der sud-norwegishen Augit- und Nephelinsyenite. Zeits. Kryst. Mineral. 16, 1-663.Google Scholar
Brøgger, W. C. (1906) Eine sammlung der wichtigsten Typen tier Eruptivgesteine des Kristianiagebites. Nyt Mag. Naturvidensk. 44, 11544.Google Scholar
Brøgger, W. C. and Schetelig, J. (1926) Rektangelkart Kongsberg 1 : 100000), Norges Geol. Unders. Google Scholar
Burnham, C. W. (1979) Magmas and Hydrothermal Fluids. I. Geochemistry of hydrothermal ore deposits, 2nd edn. (Barnes, H. L., ed.) J. Wiley & Sons, 71136.Google Scholar
Chou, I. M. (1987) Phase relations in the system NaCl-KCl-H2O. lII. Solubilities of halite in vaporsaturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. Geochim. Cosmochim. Acta 51, 1965-75.CrossRefGoogle Scholar
Clynne, M. A. and Potter, R. W. II. (1977) Freezing point depression of synthetic brines (abstr.). Geol. Soc. Am. Abstr. Programs 9, 930.Google Scholar
Dietrich, R. V., Heier, K. S. and Taylor, S. R. (1965) Studies on the igneous rock complex of the Oslo Region. XX. Petrology and geochemistry of ekerite. Skr. Nor. Vidensk.-Akad. Oslo. I. Ny ser. 19, 1-31.Google Scholar
Dingwell, D. B., Harris, D. M. and Scarfe, C. M. (1984) The solubility of H2O in melts in the system SiO2- Al2O3-Na2O-K2O at 1 to 2 kbars. Journ. Geol. 92, 387-95.CrossRefGoogle Scholar
Gaut, A. (1981) Field relations and petrography of the biotite granites of the Oslo region. Norges Geol. Unders. 367, 39-64.Google Scholar
Hansteen, T. H. (1988) Cooling history of the Eikeren- Skrim peralkaline granite complex, the Oslo Region, Norway. Evidence from fluid incho'ions and mineralogy. Unpubl. Cand. Scient. thesis, Min.-Geol. Museum, Univ. of Oslo, 244 pp.Google Scholar
Hansteen, T. H. and Burke, E. A. J. (1989) Melt-mineral-fluid interaction in peralkaline silicic intrusions in the Oslo Rift, Southeast Norway. II. High-temperature fluid inclusions in the Eikeren-Skrim granite complex. Norges geol. Unders. 00.00.Google Scholar
Heier, K. S. and Compston, W. (1969) Rb-Sr studies of the plutonic rocks of the Oslo region. Lithos, 2, 133-45.CrossRefGoogle Scholar
Holland, H. D. (1972) Granites, solutions and base metal deposits. Econ. Geol. 67, 281-301.CrossRefGoogle Scholar
Manning, D. A. C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol. 76, 206-15.CrossRefGoogle Scholar
Manning, D. A. C., Hamilton, D. L., Henderson, C. M. B. and Dempsey, M. J. (1980) The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminosilicate melts. Contrib. Mineral. Petrol. 75, 257-62.CrossRefGoogle Scholar
Nabelek, P. I. (1986) Trace-element modelling of the petrogenesis of granophyres and aplites in the Notch Peak granitic stock, Utah. Am. Mineral. 71, 460-71.Google Scholar
Neumann, E.-R. (1974) The distribution of Mn2+ and Fe2+ between ilmenites and magnetites in igneous rocks. Am. J. Sci. 274, 1074-88.CrossRefGoogle Scholar
Neumann, E.-R. (1976) Compositional relations among pyroxenes, amphiboles and other mafic phases in the Oslo Region plutonic rocks. Lithos, 9, 85-109.CrossRefGoogle Scholar
Neumann, E.-R. (1978) Petrology of the plutonic rocks. I. The Oslo Paleorift, A Review and Guide to Excursions, Norges Geol. Unders. 337 (Dons, J. A. and Larsen, B. T. eds.) 2534.Google Scholar
Neumann, E.-R. (1980) Petrogenesis of the Oslo Region larvikites and associated rocks. J. Petrol. 21, 498-531.Google Scholar
Neumann, E.-R., Brunfelt, A. O. and Finstad, K. G. (1977) Rare earth elements in some igenous rocks in the Oslo rift, Norway. Lithos, 10, 311-9.CrossRefGoogle Scholar
Neumann, E.-R., Tilton, G. R. and Tuen, E. (1988) Sr, Nd and Pb isotope geochemistry of the Oslo rift igenous province, southeast Norway. Geochim. Cosmochim. Acta, 52, 199-2008.CrossRefGoogle Scholar
Neumann, E.-R., Andersen, T. and Hansteen, T. H. (1989) Meltmineral-fluid interaction in peralkaline silicic intrusions in the Oslo Rift, Southeast Norway. I. Geochemistry of the Eikeren ekerite. Norges Geol. Unders. 00.00.Google Scholar
Nystuen, J. P. (1975) Plutonic and subvolcanic intrusions in the Hurdal area, Oslo region. Norges Geol. Unders. 317, 1-21.Google Scholar
Oftedahl, C. (1978) Origin of the lavas of the Vestfold lava plateu. I. Petrology and geochemistry of Conénental Rifts. NA TO ASl series C, 36 (Neumann, E.-R. and Ramberg, I. B., eds.) D. Reidel, 193208.CrossRefGoogle Scholar
Poty, B., Leroy, J. and Jachimowicz, L. (1976) Un nouvel appareil pour la mesure des temperatures sous le microscope: 1 installation de microthermometrie Chaixmeca. Bull. Soc. Fr. Mineral. CristaUogr. 99, 182-6.Google Scholar
Raade, G. (1972) Mineralogy of the miarolitic cavities in the Plutonic Rocks of the Oslo Region, Norway. Mineral. Record 3, 7-11.Google Scholar
Raade, G. (1973) Distribution of radioactive elements in the plutonic rocks of the Oslo Region. Unpubl. Cand. Real. thesis, Univ. of Oslo, 162pp.Google Scholar
Raade, G. (1978) Distribution of Th, U, K in the plutonic rocks of the Oslo Region, Norway. I. Petrology and geochemistry of continental rifts. NATO ASI series C, 136 (Neumann, E.-R. and Ramberg, I. B., eds.) D. Reidel. 185-92.CrossRefGoogle Scholar
Ramberg, I. B. (1976) Gravity interpretation of the Oslo Graben and associated igneous rocks. Norges Geol Unders. 325.Google Scholar
Ramberg, I. B. and Larsen, B. T. (1978) Tectonomagmatic evolution. I. The Oslo Paleorift, A Review and Guide to Excursions, Norges Geol. Unders. 337 (Dons, J. A. and Larsen, B. T., eds.) 5573.Google Scholar
Rasmussen, E., Neumann, E.-R., Andersen, T., Sundvoll, B., Fjerdingstad, V. and Stabel, A. (1988) Petrogenetic processes associated with intermediate and silicic magmatism in the Oslo rift, south-east Norway. Mineral. Mag. 52, 293-307.CrossRefGoogle Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12, 644 pp.Google Scholar
Roedder, E. and Coombs, D. S. (1967) Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascencion Island. J. Petrol. 8, 41-51.CrossRefGoogle Scholar
Sæther, E. (1962) Studies on the igneous rock complex of the Oslo region, XVIII. General investigations of the igneous rocks in the area north of Oslo. Skr. Nor. Vidensk. Akad. Oslo I. Ny ser. 1, 184pp.Google Scholar
Sterner, S. M., Hall, D. L. and Bodnar, R. J. (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapour-saturated conditions. Geochim. Cosmochim. Acta, 52, 989-1005.CrossRefGoogle Scholar
Sundvoll, B. (1978) Rb/Sr-relationship in the Oslo igneous rocks. I. Petrology and geochemistry of continental rifts. NA TO ASI series C, 136 (Neumann, E.-R. and Ramberg, I. B., eds.) D. Reidel. 181-4.CrossRefGoogle Scholar
Thompson, R. N. and MacKenzie, W. S. (1967) Feldspar-liquid equilibria in peralkaline acid liquids: An experimental study. Am. J. Sci. 265, 714-34.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74, 153 pp.Google Scholar
Weast, R. C. (1984) Handbook of chemistry and physics. CRC press, Cleveland, Ohio.Google Scholar