Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T17:04:10.213Z Has data issue: false hasContentIssue false

Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2

Published online by Cambridge University Press:  28 February 2018

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200, Russia
Evgeniya A. Lukina
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
Evgeniy V. Nazarchuk
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
Wulf Depmeier
Affiliation:
Institut für Geowissenschaften der Universität Kiel, Olshausenstr. 40, Kiel, D-24098, Germany
Rimma S. Bubnova
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Pr-t, Bldg. 18, Moscow 117071, Russia
Evgeniya Yu. Avdontseva
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
Stanislav K. Filatov
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
Vadim M. Kovrugin
Affiliation:
Department of Crystallography, St. Petersburg State University, 7–9 University Emb., St. Petersburg 199034, Russia
*

Abstract

The new mineral saranchinaite, ideally Na2Cu(SO4)2, was found in sublimates of the Saranchinaitovaya fumarole, Naboko Scoria Cone, Tolbachik volcano, Kamchatka, Russia. Its discovery and study has enabled the characterization of the thermal decomposition of kröhnkite and provided an insight into the high-temperature behaviour of other kröhnkite-type materials. Saranchinaite is monoclinic, P21, a = 9.0109(5), b = 15.6355(8), c = 10.1507(5) Å, β = 107.079(2)°, V = 1367.06(12) Å3, Z = 8 and R1 = 0.03. Saranchinaite is a unique mineral in that two of its four independent Cu sites display a very unusual Cu2+ coordination environment with two weak Cu–O bonds of ~2.9–3.0 Å, resulting in [4+1+2] CuO7 polyhedra. Each of the Cu-centred polyhedra shares common corners with SO4 tetrahedra resulting in a [Cu4(SO4)8]8– framework with a complex channel system occupied by Na atoms. Saranchinaite is sensitive to moisture and transforms into kröhnkite within one week when exposed to open air at 87% relative humidity and 25°C. High-temperature X-ray diffraction studies were performed for both kröhnkite (from La Vendida mine, Antofagasta Region, Chile) and saranchinaite. During thermal expansion kröhnkite retains its strongly anisotropic character up to its full dehydration and the formation of saranchinaite at ~200°C, which then transforms back into kröhnkite after exposure to open air. The thermal expansion of saranchinaite is more complex than that of kröhnkite. Saranchinaite is stable up to 475°C with subsequent decomposition into tenorite CuO, thénardite Na2SO4 and unidentified phases.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ed Grew

References

Balić-Žunić, T., Garavelli, A., Acquafredda, P., Leonardsen, E. and Jakobsson, S.P. (2009) Eldfellite, NaFe(SO4)2, a new fumarolic mineral from Eldfell volcano, Iceland. Mineralogical Magazine, 73, 5157.CrossRefGoogle Scholar
Barpanda, P., Oyama, G., Ling, C.D. and Yamada, A. (2014) Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 v insertion compound for Na-ion batteries. Chemistry of Materials, 26, 12971299.Google Scholar
Behera, J.N. and Rao, C.N.R. (2006) Amine-templated one-dimensional metal sulfates including a mixed-valent Fe compound with a half-kagome structure. Chemistry – An Asian Journal, 1, 742750.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Burns, P.C. and Hawthorne, F.C. (1995) Coordination geometry pathways in Cu2+ oxysalt minerals. Canadian Mineralogist, 33, 889905.Google Scholar
Chevrier, G., Giester, G. and Zemann, J. (1993) Neutron refinements of NaCu2(H3O2)(SO4)2 and RbCu2(H3O2)(SeO4)2: variation of the hydrogen bond system in the natrochalcite-type series. Zeitschrift für Kristallographie – Crystalline Materials, 206, 714.CrossRefGoogle Scholar
Dahlman, B. (1952) The crystal structures of kröhnkite, and brandtite. Arkiv för Mineralogi och Geologi, 1, 339366.Google Scholar
Demartin, F., Campostrini, I., Castellano, C., Gramaccioli, C.M. and Russo, M. (2012) D'ansite-(Mn), Na21Mn2+(SO4)10Cl3 and d'ansite-(Fe), Na21Fe2+(SO4)10Cl3, two new minerals from volcanic fumaroles. Mineralogical Magazine, 76, 27732783.CrossRefGoogle Scholar
Domeyko, I. (1879) Kronnkit. Pp. 250252 in: Mineralojía. Libreria Central de Servat I CA, Santiago, Chile.Google Scholar
Driscoll, L.L., Kendrick, E., Wright, A.J. and Slater, P.R. (2016) Investigation into the effect on structure of oxoanion doping in Na2M(SO4)2·2H2O. Journal of Solid State Chemistry, 242, 103111.CrossRefGoogle Scholar
Firsova, V.A., Bubnova, R.S. and Filatov, S.K. (2011) Program for the Thermal Expansion Tensor Determination for Crystalline Materials. Institute of Silicate Chemistry of Russian Academy of Science, St. Petersburg, Russia.Google Scholar
Fleck, M. and Kolitsch, U. (2003) Natural and synthetic compounds with kröhnkite-type chains. An update. Zeitschrift für Kristallographie – Crystalline Materials, 218, 553567.Google Scholar
Fleck, M., Kolitsch, U., Hertweck, B., Giester, G., Wildner, M., Prem, M. and Wohlschläger, A. (2002 a) Crystal structures of the double salt dihydrates K2Cd(SeO4)2·2H2O, K2Mn(SO4)2·2H2O, (NH4)2Cu(SeO4)2·2H2O and KFeH(SO4)2·2H2O. Zeitschrift für Kristallographie – Crystalline Materials, 217, 242248.CrossRefGoogle Scholar
Fleck, M., Kolitsch, U. and Hertweck, B. (2002 b) Natural and synthetic compounds with kröhnkite-type chains: Review and classification. Zeitschrift für Kristallographie – Crystalline Materials, 217, 435443.Google Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of kroehnkite. Acta Crystallographica, B31, 17531755.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Alpers, C.N., Jambor, J.L., Nordstrom, D.K., editors). Reviews in Mineralogy & Geochemistry, vol. 40. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Kolitsch, U. and Fleck, M. (2005) Second update on compounds with kröhnkite-type chains. Zeitschrift für Kristallographie – Crystalline Materials, 220, 3141.CrossRefGoogle Scholar
Kolitsch, U. and Fleck, M. (2006) Third update on compounds with kröhnkite-type chains: The crystal structure of wendwilsonite [Ca2Mg(AsO4)2·2H2O] and the new triclinic structure types of synthetic AgSc(CrO4)2·2H2O and M2Cu(Cr2O7)2·2H2O (M = Rb, Cs). European Journal of Mineralogy, 18, 471482.CrossRefGoogle Scholar
Leftwich, K., Bish, D.L. and Chen, C.H. (2012) Crystal structure and hydration/dehydration behavior of Na2Mg(SO4)2·16H2O: A new hydrate phase observed under Mars-relevant conditions. American Mineralogist, 98, 17721778.CrossRefGoogle Scholar
Majzlan, J., Zittlau, A.H., Grevel, K.-D., Schliesser, J., Woodfield, B.F., Dachs, E., Števko, M., Chovan, M., Plášil, J., Sejkora, J. and Milovská, S. (2016) Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline. Canadian Mineralogist, 53, 937960.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.Google Scholar
Marinova, D., Kostov, V., Nikolova, R., Kukeva, R., Zhecheva, E., Sendova-Vasileva, M. and Stoyanova, R. (2015) From kröhnkite- to alluaudite-type of structure: Novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkali-metal ion batteries. Journal of Materials Chemistry, A3, 2228722299.CrossRefGoogle Scholar
Mills, S.J., Wilson, S.A., Dipple, G.M. and Raudsepp, M. (2010) The decomposition of konyaite: Importance in CO2 fixation in mine tailings. Mineralogical Magazine, 74, 903917.Google Scholar
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) Looking for jarosite on Mars: the low-temperature crystal structure of jarosite. American Mineralogist, 98, 19661971.Google Scholar
Nadeem, M.A., Bhadbhade, M., Bircher, R. and Stride, J.A. (2010) Three isolated structural motifs in one crystal: penetration of two 1D chains through large cavities within 2D polymeric sheets. CrystEngComm, 12, 13911393.Google Scholar
Nazarchuk, E.V., Siidra, O.I., Agakhanov, A.A., Lukina, E.A., Avdontseva, E.Y. and Karpov, G.A. (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulphate mineral from the Tolbachik volcano. Mineralogical Magazine, in press https://doi.org/10.1180/minmag.2017.081.089CrossRefGoogle Scholar
Pasha, I., Choudhury, A. and Rao, C.N.R. (2003) The first organically templated linear metal selenite. Journal of Solid State Chemistry, 174, 386391.Google Scholar
Peterson, R.C. and Wang, R. (2006) Crystal molds on Mars: Melting of a possible new mineral species to create Martian chaotic terrain. Geology, 34, 957960.Google Scholar
Saha, D., Madras, G. and Guru Row, T.N. (2011) Manipulation of the hydration levels in minerals of sodium cadmium bisulfate toward the design of functional materials. Crystal Growth and Design, 11, 32133221.Google Scholar
Sheldrick, G.M. (2015) New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallographica, C71, 38.Google Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014) Unique thallium mineralization in the fumaroles of the Tolbachik volcano, Kamchatka Peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2018) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik vulcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Stoilova, D., Marinova, D., Wildner, M. and Georgiev, M. (2009 a) Comparative study on energetic distortions of ${\rm SO}{_4^{2-}} $ ions matrix-isolated in compounds with kröhnkite-type chains, K2Me(CrO4)2·2H2O and Na2Me(SeO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd). Solid State Sciences, 11, 20442050.CrossRefGoogle Scholar
Stoilova, D., Marinova, D. and Georgiev, M. (2009 b) Hydrogen bond strength in chromates with kröhnkite-type chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd). Vibrational Spectroscopy, 50, 245249.Google Scholar
Szynkiewicz, A., Borrok, D.M. and Vaniman, D.T. (2014) Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars. Earth and Planetary Science Letters, 393, 1425.Google Scholar
Testasicca, L.P., Frost, R.L., Ruan, X., Lima, J., Belotti, F.M. and Scholz, R. (2016) The application of high-temperature X-ray diffraction and infrared emission spectroscopy to the thermal decomposition of kröhnkite. Journal of Thermal Analysis and Calorimetry, 126, 10891095.CrossRefGoogle Scholar
Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W. and Feldman, W.G. (2004) Magnesium sulphate salts and the history of water on Mars. Nature, 431, 663665.Google Scholar
Vasavada, A. (2017) Our changing view of Mars. Physics Today, 70, 3441.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.Google Scholar
Wang, A and Zhou, A. (2014) Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg- and Ca-sulfates under Mars relevant conditions. Icarus, 234, 162173.Google Scholar
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008) Flux syntheses and crystal structures of new compounds with decorated kröhnkite-like chains. Acta Chimica Slovenica, 55, 909917.Google Scholar
Wildner, M. and Stoilova, D. (2003) Crystal structures and crystal chemical relationships of kröhnkite- and collinsite-type compounds Na2Me2+(XO4)2·2H2O (X = S, Me = Mn, Cd; and X = Se, Me = Mn, Co, Ni, Zn, Cd) and K2Co(SeO4)2·2H2O. Zeitschrift für Kristallographie – Crystalline Materials, 218, 201209.Google Scholar
Yang, H., Jenkins, R.A., Downs, R.T., Evans, S.H. and Tait, K.T. (2011) Rruffite, Ca2Cu(AsO4)2·2H2O, a new member of the roselite group, from Tierra Amarilla, Chile. Canadian Mineralogist, 49, 877884.Google Scholar
Yoshiasa, A., Yagyu, G., Ito, T., Yamanaka, T. and Nagai, T. (2000) Crystal structure of the high pressure phase(II) in CuGeO3. Zeitschrift für Anorganische und Allgemeine Chemie, 626, 3641.Google Scholar
Supplementary material: PDF

Siidra et al. supplementary material

Siidra et al. supplementary material
Download Siidra et al. supplementary material(PDF)
PDF 354.6 KB