Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T18:52:33.257Z Has data issue: false hasContentIssue false

A review of the structural architecture of tellurium oxycompounds

Published online by Cambridge University Press:  02 January 2018

A. G. Christy*
Affiliation:
Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relative to its extremely low abundance in the Earth's crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. A threshold was applied for Te4+–O links of ∼2.45 Å or 0.3 valence units with some flexibility, as a criterion to define strongly bound Te–O polymers and larger structural units. Using this criterion, Te4+ cations display one-sided 3-, 4- or 5-coordination by oxygen (with rare examples of coordination numbers 2 and 6). For both valence states of Te, examples are known of TemOn complexes which are monomeric (m = 1; neso), noncyclic finite oligomers (soro), rings (cyclo), infinite chains (ino), layers (phyllo) and frameworks (tecto tellurates). There is a clear analogy to the polymerization classes that are known for silicate anions, but the behaviour of Te is much richer than that of Si for several reasons: (1) the existence of two cationic valence states for Te; (2) the occurrence of multiple coordination numbers; (3) the possibility of edge-sharing by TeOn polyhedra; (4) the possibility for oxygen ligands to be 3-coordinated by Te; and (5) the occurrence of TemOn polymers that are cationic, as well as neutral or anionic. While most compounds contain only one or two symmetrically distinct types of Te atom, Pauling's Fifth Rule is frequently violated, and stoichiometrically simple compounds such as CaTeO3 can have polymorphs with up to 18 distinct Te sites. There is a tendency for local symmetry features such as the threefold axis of a TeO6 octahedron or the acentric symmetry of a Te4+On polyhedron to be inherited by the host structure; the latter in particular can lead to useful physical properties such as nonlinear optical behaviour. We develop for the first time a hierarchical taxonomy of Te-oxysalt structures, based upon (1) valence state of Te; (2) polymerization state of TemOn complexes; (3) polymerization state of larger strongly-bound structural units that include non-Te cations. Structures are readily located and compared within this classification.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Abdelhedi, M., Dammak, M., Cousson, A. and Kolsi, A. W (2005) Structural, calorimetric and conductivity study of the new mixed solution Rb2(SO4)0.5(SeO4)0.5Te(OH)6 . Journal of Alloys and Compounds, 398,5561 CrossRefGoogle Scholar
Ahmed, M.A., Fjellvåg, H. and Kjekshus, A. (2000) Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid. Dalton Transactions, 24,45424549 CrossRefGoogle Scholar
Ajaz, H., Deiseroth, H.J., Schlosser, M. and Rabbani, F. (2009) Synthesis and crystal structure of indium tellurium trioxide bromide. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 39,209210 CrossRefGoogle Scholar
Al Ansari, S.V., Al Ansari, Ya.F., Chumakov, V.M., Albov, D.V., Savinkina, E.V., Davydova, M.N. and Tsivadze, A.Y. (2007) Synthesis and structure of the stoichio-metric sodium bis(dihydrotellurato)cuprate(III) Na5[Cu(H2TeO6)2] · 16(H2O). Kristallografiya, 52,256258 Google Scholar
Alcock, N.W. and Harrison, W.D. (1982) Refinement of the structure of tellurium phosphate Te2O3 · HPO4 . Acta Crystallographica, B38, 18091811. CrossRefGoogle Scholar
Allmann, R(1976) Te(OH)6·NaF, eine Struktur mit kurzen OH-'-F-Wasserstoffbriicken Acta Crystallographica, B32, 10251028. CrossRefGoogle Scholar
Allmann, R. and Haase, W (1976) Crystal structure of an adduct of telluric acid with potassium fluoride, Te(OH)6 · 2KF. A compound with short oxygen–hydrogen–·fluorine hydrogen bonds. Inorganic Chemistry, 15,804807 CrossRefGoogle Scholar
Almond, P.M. and Albrecht Schmitt, T.E. (2002) Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K(UO2Te2O5(OH)), Tl3((UO2)2(Te2O5(OH))(Te2O6)) · 2(H2O), β-Tl2(UO2(TeO3)2) and Sr3(UO2(TeO3)2) (TeO3)2 . Inorganic Chemistry, 41,54955501 CrossRefGoogle Scholar
Almond, P.M., McKee, M.L. and Albrecht Schmitt, T.E. (2002) Unusual uranyl tellurites containing (Te2O6)4∼ ions and three-dimensional networks. Angewandte Chemie, International Edition, 41, 34263429. 3.0.CO;2-F>CrossRefGoogle Scholar
Alonso, J.A., Castro, A., Enjalbert, R., Galy, J. and Rasines, I. (1992) The quadruple chains of SbO6octahedra in Sb2Te2O9: an example of low extent of aggregation of pentavalent antimony polyhedra. Dalton Transactions, 17, 25512557. CrossRefGoogle Scholar
An, Y., Mosbah, A., Le Gal La Salle, A., Guyomard, D., Verbaere, A. and Piffard, Y (2001) K2[Te4O8(OH)10]: synthesis, crystal structure and thermal behavior. Solid State Sciences, 3, 93101. CrossRefGoogle Scholar
Anders, E. and Ebihara, M. (1982) Solar system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 23632380. CrossRefGoogle Scholar
Andersen, L. and Moret, J. (1983) Dipotassium ditellur-ium (IV) pentaoxide trihydrate, K2Te2O5 · 3H2O. Acta Crystallographica, C39, 143145. Google Scholar
Andersen, L., Lindqvist, O. and Moret, J. (1984) The structures of magnesium tellurate (IV) hexahydrate, MgTeO3 · 6H2O, and magnesium selenate (IV) hex¬ahydrate, MgSeO3 · 6H2O. Acta Crystallographica, C40, 586589. Google Scholar
Andersen, L., Langer, V., Stromberg, A. and Stromberg, D. (1989) The structure of K2TeO3 — an experimental and theoretical study. Acta Crystallographica, B45, 344348. CrossRefGoogle Scholar
Anderson, J.B., Rapposch, M.H., Anderson, C.P. and Kostiner, E. (1980) Crystal structure refinement of basic tellurium nitrate: A reformulation as (Te2O4H)+(NO3)∼. Monatshefte für Chemie/Chemical Monthly, 111,789796 CrossRefGoogle Scholar
Anderson, J.S. (1937) Constitution of the poly-acids. Nature, 140, 850.CrossRefGoogle Scholar
Andersson, S. (1978) Structures related to the β-tungsten or Cr3Si structure type. Journal of Solid State Chemistry, 23,191204 CrossRefGoogle Scholar
Andrade, M.B., Yang, H., Downs, R.T., Jenkins, R.A. and Fay, I. (2014) Te-rich raspite, Pb(W0.56Te0 44)O4, from Tombstone, Arizona U.S.A.: the first natural example of Te6+ substitution for W6+. American Mineralogist, 99, 15071510. CrossRefGoogle Scholar
Andreae, M.O. (1984) Determination of inorganic tellurium species in natural waters. Analytical Chemistry, 56, 20642066. CrossRefGoogle ScholarPubMed
Arnaud, Y., Averbuch-Pouchot, M.T., Durif, A. and Guidot, J. (1976) Structure cristalline de l'oxyde mixte de molybdene-tellure: MoTe2O7 . Acta Crystallographica, B32, 14171420. CrossRefGoogle Scholar
Artner, C. and Weil, M. (2012) Pb6Co9(TeO6)5 . Acta Crystallographica, E68, i71i71.Google Scholar
Artner, C. and Weil, M. (2013) Re-examination of Pb3TeO6: Determination of its correct composition as Pb5TeO8 . Journal of Solid State Chemistry, 199,240247 CrossRefGoogle Scholar
Astier, R., Philippot, E., Moret, J. and Maurin, M. (1979) Evolution de la coordination des atomes de tellure IV et de fer III dans les composés du systeme Fe2O3— TeO2 . Revue de Chimie Minerale, 13,359372 Google Scholar
Augsburger, M.S., Viola, M.C., Pedregosa, J.C., Munoz, A., Alonso, J.A. and Carbonio, R.E. (2005) Preparation, crystal and magnetic structures of two new double perovskites: Ca2CoTeO6 and Sr2CoTeO6 . Journal of Materials Chemistry, 15, 9931001. CrossRefGoogle Scholar
Averbuch-Pouchot, M.T. (1980) Structure d'un phosphate tellurate de sodium: Te(OH)6 · Na2HPO4 · NaH2PO4 . Acta Crystallographica, B36, 24052406. CrossRefGoogle Scholar
Averbuch-Pouchot, M.T. (1983) Crystal chemistry of some addition compounds of alkali iodates with telluric acid. Journal of Solid State Chemistry, 49,368378 CrossRefGoogle Scholar
Averbuch-Pouchot, M.T. (1984) Crystal structure of Te (OH)6 · 2KNO3 · 2H2O: an addition compound of tel¬luric acid. ZeitschriftfürKristallographie, 167,247252 Google Scholar
Averbuch-Pouchot, M.T. (1988a) Structure of a new adduct between telluric acid and a condensed phosphate: Cs3P3O9 · Te(OH)6 · H2. Acta Crystallographica, C44, 11661168. Google Scholar
Averbuch-Pouchot, M.T. (1988b) Crystal structure of a new telluric acid adduct: Te(OH)6 · 2CsCl. Zeitschrift für Kristallographie, 182,291295 CrossRefGoogle Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1981) Crystal data for two new phosphate-tellurates: Te(OH)6(Tl (H2PO4))2(Tl2(HPO4)) and Te(OH)6(Tl(H2PO4))2.CrossRefGoogle Scholar
\kiUn,ih h\H,/;■. It Hulk nil.Id. ∼l ∼ii Averbuch-Pouchot, M.T. and Durif, A. (1983) Structure of a potassium diphosphate tellurate hydrate, K3HP2O7 · Te(OH)6 · H2O. Acta Crystallographica, C39, 2728. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1987a) Structure of a new adduct between telluric acid and a condensed phosphate: K4P4O12 · Te(OH)6 · 2H2O. Acta Crystallographica, C43, 12451247. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1987b) Crystal structure of a new adduct between telluric acid and alkali cyclo-triphosphates: Te(OH)6 · Na3P3O9 · K3P3O9 . Acta Crystallographica, C43, 16531655. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1989) Determination des liaisons hydrogene dans le compose d'addition urée-acide tellurique: Te (OH)6(CO(NH2)2)2. Comptes Rendus Hebdomadaires des Séances de l’Academie des Sciences, Serie C, 309,2528.Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1990) Crystal chemistry of cyclo-hexaphosphates. VI. Structure of ammonium cyclo-hexaphosphate tellurate dihydrate. Acta Crystallographica, C46, 179181. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1991) Crystal chemistry of cyclo-hexaphosphates. XVI. Structures of potassium cyclo-hexaphosphate ditellurate tri-hydrate and rubidium cyclo-hexaphosphate tritellurate tetrahydrate. Acta Crystallographica, C47, 15761579. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1992) Structure of an adduct between diammonium dihydrogendi-phoshate and telluric acid: (NH4)2H2P2O7 · Te(OH)6 . Acta Crystallographica, C48, 973975. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1993a) Ammonium cyclo-octaphosphate-telluric acid dihy¬drate adduct. Acta Crystallographica, C49, 361363. Google Scholar
Averbuch-Pouchot, M.T. and Durif, A. (1993b) Cs2H2P2O7 · Te(OH)6, a new adduct between a diphosphate and telluric acid. European Journal of Solid State Inorganic Chemistry, 30,11531162 Google Scholar
Averbuch-Pouchot, M.T. and Schuelke, U. (1996) Preparation and crystal structure of guanidinium cyclo-dodecaphosphate telluric acid hydrate: (C (NH2)2)12P12O36 · 12Te(OH)6. 24H2O. Zeitschrift für anorganische und allgemeine Chemie, 622,19972002 CrossRefGoogle Scholar
Averbuch-Pouchot, M.T., Durif, A. andGuitel, J.C. (1979) Structure cristalline d'un phospho-tellurate de rubid¬ium: Te(OH)6Rb2(HPO4)Rb(H2PO4). Materials Research Bulletin, 14,12191223 CrossRefGoogle Scholar
Averbuch-Pouchot, M.T., Durif, A. and Guitel, J.C. (1980) Crystal structures of two cesium phosphate-tellurates: (Te (OH)6)(Cs2HPO4) and (Te(OH)6)(Cs2HPO4) (CsH2PO4)2. Materials Research Bulletin, 15, 387395. CrossRefGoogle Scholar
Ayed, B. and Haddad, A. (2013) The crystal structure of potassium ammonium hexamolybdotellurate with telluric acid K5NH4(TeMo6O24 · Te(OH)6 · 6H2O. Comptes Rendus Chimie, 16,114121 CrossRefGoogle Scholar
Babel, D. (1967) Structural chemistry of octahedral fluorocomplexes of the transition elements. Structure and Bonding, 3, 187 CrossRefGoogle Scholar
Back, M.E., Grice, J.D., Gault, R.A., Criddle, A.J. and Mandarino, J.A. (1999) Walfordite, a new tellurite species from the Wendy open pit, El Indio-Tambo mining property, Chile. The Canadian Mineralogist, 37, 12611268. Google Scholar
Back, M.E., Grice, J.D., Sturman, B.D., Cooper, M.A., Gault, R.A. and Walford, P.C. (2011) Telluromandarinoite, IMA 2011-013. CNMNC Newsletter No. 10, October 2011, page 2551. Mineralogical Magazine, 75, 25492561. Google Scholar
Baker, L.C.W. and Figgis, J.S. (1970) A new fundamental type of inorganic complex: hybrid between the heteropoly and conventional coordination complexes. Possibilities for geometrical isomerism in 11-, 12-, 17-and 18-heteropoly derivatives. Journal of the American Chemical Society, 92, 37943797. CrossRefGoogle Scholar
Baldinozzi, G., Grebille, D., Sciau, P., Kiat, J.M., Moret, J. and Berar, J.F. (1998) Rietveld refinement of the incommensurate structure of the elpasolite (ordered perovskite) Pb2MgTeO6 . Journal of Physics: Condensed Matter, 10,64616472 Google Scholar
Balraj, V and Vidyasagar, K. (1998) Low-temperature syntheses and characterization of novel layered tell-urites, A2Mo3TeO12 (A=NH4, Cs), and “zero-dimensional” tellurites. A4Mo6Te2O24■ 6H2O (A= Rb, K). Inorganic chemistry, 37, 4764–774.Google Scholar
Balraj, V and Vidyasagar, K. (1999a) Hydrothermal synthesis and characterization of novel one-dimensional tellurites of molybdenum (VI), A4Mo6TeO22 ‘ 2H2 . (A = NH4, Rb). Inorganic Chemistry, 38,13941400 Google Scholar
Balraj, V and Vidyasagar, K. (1999b) Hydrothermal synthesis and characterization of a novel two-dimen¬sional tellurite of molybdenum (VI), (NH4)6Mo8Te8O43(H2O). Inorganic Chemistry, 38,34583462 Google Scholar
Balraj, V and Vidyasagar, K. (1999c) Syntheses and characterization of novel three-dimensional tellurites, Na2MTe4O12 (M=W, Mo), with intersecting tunnels. Inorganic Chemistry, 38,58095813 Google Scholar
Bartram, S.F. (1966) Crystal structure of the rhombohedral MO3■ 3R2O3 compound. (M=U, Wor Mo) and their relation to ordered R7O12 phases. Inorganic Chemistry, 5, 749754. Google Scholar
Basciano, L.C., Peterson, R.T., Roeder, P.L. and Swainson, I. (1998) Description of schoenfliesite, MgSn(OH)6, and roxbyite, Cu1.72S, from a 1375 BC shipwreck, and Rietveld neutron-diffraction refine-ment of synthetic schoenfliesite, wickmanite MnSn (OH)6 and burtite, CaSn(OH)6 . The Canadian Mineralogist, 36,12031210 Google Scholar
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1996) Rosiaite, PbSb2O6, a new mineral from the Cetine mine, Siena, Italy. European Journal of Mineralogy, 8, 487–92.CrossRefGoogle Scholar
Bats, J.W. (1978) A refinement of potassium chlorate. Acta Crystallographica, B34, 16791681. CrossRefGoogle Scholar
Bazuev, G.V., Golovkin, G.V., Zubkov, V.G. and Tyutyunnik, A.S. (1994) Synthesis, crystal structure, and magnetic properties of complex oxides Cu2BSbO6 (B= Mn,Fe,Ga) with a bixbyite structure. Journal of Solid State Chemistry, 113,132137.Google Scholar
Becker, R. and Berger, H. (2006a) Reinvestigation of Ni3TeO6 . Acta Crystallographica, E62, i222i223.Google Scholar
Becker, R. and Berger, H. (2006b) Cu2CoTeO6 . Acta Crystallographica, E62, i261— i262.Google Scholar
Becker, R. and Johnsson, M. (2004) Crystal structure of the new compound Co6(TeO3)2(TeO6)Cl2. Solid State Sciences, 6, 519522. CrossRefGoogle Scholar
Becker, R. and Johnsson, M. (2007) Three new tellurite halides with unusual Te4+ coordinations and iron honeycomb lattice variants. Journal of Solid State Chemistry, 180,17501758 CrossRefGoogle Scholar
Becker, R. and Mats, J. (2005) Crystal structure of Cu3Bi (TeO3)2O2Cl: a Kagome lattice type compound. Solid State Sciences, 7, 375380. CrossRefGoogle Scholar
Becker, C.R., Tagg, S.L., Huffman, J.C. andZwanziger, J.W. (1997) Crystal structures of potassium tetratellurite, K2Te4O9, and potassium ditellurite, K2Te2O5, and structural trends in solid alkali tellurites. Inorganic Chemistry, 36,55595564 CrossRefGoogle Scholar
Becker, R., Johnsson, M., Kremer, R. and Lemmens, P. (2003) Crystal structure, magnetic properties and conductivity of CuSbTeO3Cl2 . Solid State Sciences, 5, 14111416. CrossRefGoogle Scholar
Becker, R., Johnsson, M., Kremer, R. and Lemmens, P. (2005) Crystal structure and magnetic properties of Cu3(TeO3)2Br2 — a layered compound with a new Cu (II) coordination polyhedron. Journal of Solid State Chemistry, 178,20242029 CrossRefGoogle Scholar
Becker, R., Berger, H., Johnsson, M., Prester, M., Morohnic, Z., Miljak, M. and Herak, R. (2006a) Crystal structure and magnetic properties of Co2TeO3Cl2 and Co2TeO3Br2 . Journal of Solid State Chemistry, 179,836842 CrossRefGoogle Scholar
Becker, R., Johnsson, M., Berger, H., Prester, M., Zivkovic, I., Drobac, D., Miljak, M. and Herak, R. (2006b) Crystal structure and magnetic properties of Co7(TeO3)4Br6 — a new cobalt tellurite bromide. Solid State Sciences, 8, 836842. CrossRefGoogle Scholar
Becker, R., Prester, M., Berger, H., Johnsson, M., Drobac, D. and Zivkovic, I. (2007a) Crystal structure and magnetic properties of the new cobalt tellurite halide Co5(TeO3)4X2 (X=Cl, Br). Solid State Sciences, 9, 223230.CrossRefGoogle Scholar
Becker, R., Johnsson, M. and Berger, H. (2007b) Crystal structure of the new cobalt tellurite chloride Co5Te4O11Cl4. Zeitschrift für anorganische und allgemeine Chemie, 633,422424 CrossRefGoogle Scholar
Benmiloud, L., Moret, J., Maurin, M. and Philippot, E. (1980) Structure d'un tellurate d'ammonium: NH4TeO3(OH).Acta Crystallographica, B36, 139141. Google Scholar
Benmiloud, L., Maurin, M., Moret, J. and Philippot, E. (1981) Étude cristallographique d'un tellurite d'am¬ monium: (NH4)2Te4O9. Revue de Chimie Minerale, 18,190198.Google Scholar
Berand, N. and Range, K.J. (1994) Single-crystal structure refinement of the trirutile-type compound Ga2TeO6 . Journal of Alloys and Compounds, 205,35 CrossRefGoogle Scholar
Berdonosov, P.S., Dolgikh, V.A. and Lightfoot, P. (2007) The crystal structure of a new bismuth tellurium oyxchloride Bi0 87Te204 9CI0 87 from neutron powder diffraction data. Journal of Solid State Chemistry, 180,15331537 CrossRefGoogle Scholar
Berger, S.V. (1988) The crystal structure of the isomorph- ous orthoborates of cobalt and magnesium. Acta Chemica Scandinavica, 3, 660675 CrossRefGoogle Scholar
Beyer, H. (1967) Verfeinerung der Kristallstruktur von Tellurit, dem rhombischen TeO2 . Zeitschrift für Kristallographie, 124,228237.CrossRefGoogle Scholar
Bhuvanesh, N.S.P.. and Halasyamani, P.S. (2001) Synthesis and characterization of NaGaTe2O6 · 2.4 (H2O): a new open-framework tellurite related to zemannite. Inorganic Chemistry, 40, 14041405 CrossRefGoogle Scholar
Bindi, L. and Cipriani, C. (2003) The crystal structure of winstanleyite, TiTe3O8, from the Grand Central Mine, Tombstone, Arizona. The Canadian Mineralogist, 41, 14691473..CrossRefGoogle Scholar
Bindi, L. and Pratesi, G. (2007) Centric or acentric crystal structure for natural schmitterite, UTeO5? New evidence from a crystal from the type locality. Mineralogy and Petrology, 91,129138.CrossRefGoogle Scholar
Blanchandin, S., Champarnaud-Mesjard, J.C., Thomas, P. and Frit, B. (2000a) Crystal structure of BiNbTe2O8 . Solid State Sciences, 2, 223228. CrossRefGoogle Scholar
Blanchandin, S., Champarnaud-Mesjard, J.C., Thomas, P. and Frit, B. (2000b) Crystal structure of Nb2Te4O13 . Journal of Alloys and Compounds, 306,175185.CrossRefGoogle Scholar
Boher, P., Garnier, P., Gavarri, J.R. and Hewat, A.W. (1985) Monoxyde quadratique PbOα(I): description de la transition structurale ferroélastique. Journal of Solid State Chemistry, 57,343350..CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92,198203 CrossRefGoogle Scholar
Boren, B. (1933) X-ray investigation of alloys of silicon with chromium, manganese, cobalt and nickel. Arkiv för Kemi, Mineralogi och Geologi, 11A, 210.Google Scholar
Bouchama, M. and Tournoux, M. (1975) Polytypisme de TlSbO3. Revue de Chimie Minérale, 12,8092.Google Scholar
Boudjada, N. and Durif, A. (1982) Structure d'un trimetaphosphate-tellurate de rubidium monohydrate: Te(OH)6 · Rb3P3O9 · H2O. Acta Crystallographica, B38, 595597..CrossRefGoogle Scholar
Boudjada, N., Averbuch-Pouchot, M.T. and Durif, A. (1981a) Structure du trimetaphosphate-tellurate de sodium hexahydrate Te(OH)6 · (Na3P3O9)2 · (H2O)6 . Acta Crystallographica, B37, 645647..CrossRefGoogle Scholar
Boudjada, N., Averbuch-Pouchot, M.T. and Durif, A. (1981b) Structure d'un trimetaphosphate-tellurate de potassium dihydrate Te(OH)6 · K3P3O9 · 2H2O. Acta Crystallographica, B37, 647649. CrossRefGoogle Scholar
Boujada, N., Boujada, A. and Guitel, J.C. (1983) Hexaammonium cyclo-triphosphate telluric acid. Acta Crystallographica, C39, 656658. Google Scholar
Boukharrata, N.J., Thomas, P. and Laval, J.P. (2009) GeTe2O6, a germanium tellurate(IV) with an open framework. Acta Crystallographica, C65, i23—i26.Google Scholar
Boukharrata, N.J., Duclere, J.-R. Laval, J.P. and Thomas, P. (2013) A new oxyfluorotellurate(IV), InTe2O5F. Acta Crystallographica, C69, 460462. Google Scholar
Bragg, W.L. (1930) The structure of silicates. Zeitschrift fur Kristallographie, 74,237305 Google Scholar
Brandstätter, F. (1981) Synthesis and crystal structure determination, of Pb2[UO2][TeO3]3 . Zeitschrift für Kristallographie, 155,193200 Google Scholar
Brandt, B.G. and Skapski, A.C. (1967) A refinemnt of the crystal structure of molybdenum dioxide. Acta Chemica Scandinavica, 21,661672 CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197. CrossRefGoogle Scholar
Brown, I.D. (1969) Crystal structures of NaNiIO6, NaMnIO6, and KMnIO6. Canadian Journal of Chemistry, 47,37793782 CrossRefGoogle Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model.Oxford University Press, UK, 278 pp.Google Scholar
Brown, I.D. and Altermatt (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247. CrossRefGoogle Scholar
Brunton, G. (1973) Li2ZrF6 . Acta Crystallographica, B29, 22942296. CrossRefGoogle Scholar
Burckhardt, H.G., Platte, C. and Trömel, M. (1982) Cadmiumorthotellurat (VI) Cd3TeO6: ein pseudo-orthorhombischer Kryolith im Vergleich mit Ca3TeO6 . Acta Crystallographica, B38, 24502452. CrossRefGoogle Scholar
Burdett, J.K. and McLarnan, T.J. (1984) An orbital interpretation of Pauling's rules. American Mineralogist, 69,601621 Google Scholar
Burns, P.C., Cooper, M.A. and Hawthorne, F.C. (1995) Parakhinite, Cu32+PbTe6+O6(OH)2; crystal structure and revision of chemical formula. The Canadian Mineralogist, 33, 33–0.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymer¬ization of polyhedra. The Canadian Mineralogist, 35,15511570 Google Scholar
Burns, P.C., Pluth, 11, Smith, J.V., Eng, P., Steele, I. and Housley, R.M. (2000) Quetzalcoatlite: A new octahe-dral-tetrahedral structure from a 2 x 2 x 40 μm3 crystal at the Advanced Photon Source-GSE-CARS Facility. American Mineralogist, 85, 604607 CrossRefGoogle Scholar
Byström, A., Hok, B. and Mason, B. (1942) The crystal structure of zinc metantimonate and similar com¬pounds. Arkiv för Kemi, Mineralogi och Geologi, 154B4, 18.Google Scholar
Cachau-Herreillat, D., Norbert, A., Maurin, M. and Philippot, E. (1981) Étude cristallochimique comparée et conductivité ionique des deux variétés Li2Te2O5 α et β. Journal of Solid State Chemistry, 37,352361 CrossRefGoogle Scholar
Cachau-Herreillat, D., Norbert, A., Maurin, M., Fourcade, R. and Philippot, E. (1983) Synthese, étude structural par rayons X et par spectrometrie infrarouge et Raman du tellurite basique Li2TeO3, LiOH. Revue de Chimie Minerale, 20, 129139. Google Scholar
Carbone, C., Basso, R., Cabella, R., Martinelli, A., Grice, J.D. and Lucchetti, G. (2013) Mcalpineite from the Gambatesa mine, Italy, and redefinition of the species. American Mineralogist, 98,18991905 CrossRefGoogle Scholar
Chabchoub, N., Darriet, J. and Khemakhem, H. (2006) Structural and conductivity studies of CsKSO4Te (OH)6 and Rb1. 25K0 75SO4Te(OH)6 materials. Journal of Solid State Chemistry, 179,21642173 CrossRefGoogle Scholar
Champarnaud-Mesjard, J.C., Blanchandin, S., Thomas, P., Mirgorodsky, A., Merle-Mejean, T. and Frit, B. (2000) Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2 . Journal of Physics and Chemistry of Solids, 61, 14991507. CrossRefGoogle Scholar
Champarnaud-Mesjard, J.C., Frit, B., Chagraoui, A. and Taïri, A. (1996a) New anion-excess, fluorite-related, ordered structure: Bi2Te2W3O16 . Journal of Solid State Chemistry, 127,248255 CrossRefGoogle Scholar
Champarnaud-Mesjard, J.C., Frit, B., Chagraoui, A. and Taïri, A. (1996b) Crystal structure of a new cation-ordered fluorite-related phase: Bi2Te2WO10 . Zeitschrift für anorganische und allgemeine Chemie, 622, 19071912. CrossRefGoogle Scholar
Charushnikova, I.A., Yusov, A.B., Fedoseev, A.M. and Polyakova, I.N. (2004) F-element complexes with tellurometallate anions: I. The crystal structure of Eu2TeMo6O24 · 18(H2O). Zhurnal Neorganicheskoi Khimii, 49, 14811487. Google Scholar
Charushnikova, I.A., Fedoseev, A.M., Yusov, A.B. and Auwer, C.D. (2005) Crystal structure of a new neodymium hexamolybdotellurate, Nd2TeMo6O24 · 19H2O. Kristallografiya, 52, 223225. Google Scholar
Chi, E.O., Ok, K.M., Porter, Y and Halasyamani, P.S. (2006) Na2Te3Mo3O16: A new molybdenum tellurite with second-harmonic generating and pyroelectric properties. Chemistry of Materials, 18, 20702074 CrossRefGoogle Scholar
Choisnet, J., Bizo, L., Allix, M., Rosseinsky, M.J. and Raveau, B. (2007) Cation ordering in the fluorite-like transparent conductors In4+xSn3_2xSbxO12 and In6TeO12. Journal of Solid State Chemistry, 180,10021010 CrossRefGoogle Scholar
Choisnet, J., Rulmont, A. and Tarte, P. (1988) Les tellurates mixtes Li2ZrTeO6 et Li2HfTeO6: un nouveau phenomene d'ordre dans la famille corindon. Journal of Solid State Chemistry, 75, 124135. CrossRefGoogle Scholar
Choisnet, J., Rulmont, A. and Tarte, P. (1989) Ordering phenomena in the LiSbO3 type structure: The new mixed tellurates Li2TiTeO6 and Li2SnTeO6 . Journal of Solid State Chemistry, 82,272278 CrossRefGoogle Scholar
Christy, A.G. (1993) Multistage diffusionless pathways for reconstructive phase transitions: application to binary compounds and calcium carbonate. Acta Crystallographica, B49, 987996. CrossRefGoogle Scholar
Christy, A.G. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 3349. CrossRefGoogle Scholar
Christy, A.G. and Mills, S.J. (2013) Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra. Acta Crystallographica, B69, 446–56.Google Scholar
Christy, A.G., Kampf, A.R., Mills, S.J., Housley, R.M. and Thorne, B. (2014) Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+) [AlSi3O8]O6: a double-sheet silicate with intercalated phyllotellurate layers. Mineralogical Magazine, 78, 17631773. CrossRefGoogle Scholar
Christy, A.G., Mills, S.J., Kampf, A.R., Housley, R.M., Thorne, B. and Marty, J. (2016) The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA. Mineralogical Magazine, 80,291310 CrossRefGoogle Scholar
Churakov, A.V., Ustinova, E.A., Prikhodchenko, P.V., Tripol'skaya, T.A. and Howard, J.A.K.. (2007) Synthesis and crystal structure of new alkali metal hydrogen tellurates. Zhurnal Neorganicheskoi Khimii, 52, 16051612. Google Scholar
Ciobanu, C.L., Cook, N.J. and Spry, P.G. (2006) Preface -Special Issue: telluride and selenide minerals in gold deposits—how and why. Mineralogy and Petrology, 87, 163169. CrossRefGoogle Scholar
Cohen-Addad, C. (1977) Étude structurale des hydro-xystannates CaSn(OH)6 et ZnSn(OH)6 par diffraction neutronique, absorption infrarouge et résonance magnétique nucléaire. Bullétin de la Société Française de Minéralogie et de Cristallographie, 91,315324 CrossRefGoogle Scholar
Colville, A.A., Anderson, C.P. and Black, P.M. (1971) Refinement of the crystal structure of apophyllite: I. X–ray diffraction and physical properties. American Mineralogist, 56, 12221233 Google Scholar
Cook, N.J. and Ciobanu, C.L. (2005) Tellurides in Au deposits: implications for modelling. Pp. 13871390 in: Mineral Deposit Research: Meeting the Global Challeng. (J.W. Mao and F.P Bierlein, editors). Springer, Berlin Heidelberg New York.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of spiroffite. The Canadian Mineralogist, 34, 821826. Google Scholar
Cooper, M.A., Hawthorne, F.C. and Back, M.E. (2008) The crystal structure of khinite and polytypism in khinite and parakhinite. Mineralogical Magazine, 72, 763770. CrossRefGoogle Scholar
Coppens, P. and Eibschütz, M. (1965) Determination of the crystal structure of yttrium orthoferrite and refinement of the structure of gadolinium orthoferrite. Acta Crystallographica, 19,524531 CrossRefGoogle Scholar
Corella-Ochoa, M.N., Miras, H.N., Kidd, A., Long, D.L. and Cronin, L. (2011) Assembly of a family of mixed metal (Mo: V) polyoxometalates templated by (TeO3)2∼: (Mo12V12Te3), (Mo12V12Te2) and (Mo17V8Te). Chemical Communications, 47,87998801 CrossRefGoogle Scholar
Crosnier, M.P., Delarue, E., Choisnet, J. and Fourquet, J.L. (1992) Li+/H+ exchange on Li2TiTeO6 . European Journal of Solid State and Inorganic Chemistry, 29,321332 Google Scholar
Dammak, M., Khemakhem, H., Mhiri, T., Kolsi, A.W. and Daoud, A. (1998) Structure and characterization of a mixed crystal Rb2SO4 · Te(OH)6 . Journal of Alloys and Compounds, 280,107113 CrossRefGoogle Scholar
Dammak, M., Khemakhem, H., Mhiri, T., Kolsi, A.W. and Daoud, A. (1999) Structural and vibrational study of K2SeO4 · Te(OH)6 material. Journal of Solid State Chemistry, 145, 612618. CrossRefGoogle Scholar
Dammak, M., Mhiri, T., Jaud, J. and Savariault, J.M. (2001) Structural study of the two new cesium sulfate and selenate tellurate Cs2SO4.Te(OH)6 and Cs2SeO4. Te(OH)6 . International Journal of Inorganic Materials, 3, 861873. CrossRefGoogle Scholar
Dammak, M., Ktari, L., Cousson, A. and Mhiri, T. (2005) Structural and conductivity study of a new protonic conductor Cs0 86(NH4)! 14(SO4)(Te(OH)6). Journal of Solid State Chemistry, 178,21092116 CrossRefGoogle Scholar
Dammak, M., Mhiri, T. and Cousson, A. (2006) Neutron structural and vibrational studies of dipotassium selenate tellurate. Journal of Alloys and Compounds, 407, 176181. CrossRefGoogle Scholar
Dammak, M., Litaiem, H., Gravereau, P., Mhiri, T. and Kolsi, A.W. (2007) X-ray and electrical conductivity studies in the rubidium selenate tellurate. Journal of Alloys and Compounds, 442,316319 CrossRefGoogle Scholar
Daniel, F., Moret, J., Philippot, E. andMaurin, M. (1977a) Étude structurale de Li2TeO4. Coordination du tellure VI et du lithium par les atomes d'oxygene. Journal of Solid State Chemistry, 22,113119 CrossRefGoogle Scholar
Daniel, F., Maurin, M., Moret, J. and Philippot, E. (1977b) Étude structurale d'un nouveau tellurate alcalin: Na2TeO4. Évolution de la coordination du tellure (VI) et du cation quand on passe du cation lithium au sodium. Journal of Solid State Chemistry, 22,385391 CrossRefGoogle Scholar
Daniel, F., Moret, J., Maurin, M. and Philippot, E. (1978) Structure cristalline d'un oxotellurate mixte, TeIV et TeVI: K2TeIVTeVI3O12. Pentacoordination du tellure (IV) par les atomes d'oxygene. Ada Crystallographica, B34, 17821786. Google Scholar
Daniel, F., Moret, J., Maurin, M. and Philippot, E. (1981) Étude cristallographique du tellurite de sodium à deux molecules d'eau, Na2Te2IVO5 · 2H2O. Acta Crystallographica, B37, 12781281. CrossRefGoogle Scholar
Daniel, F., Moret, J., Maurin, M. and Philippot, E. (1982) Étude du tellurite mixte de sodium et de potassium à trois molecules d'eau: NaKTeO2 · 3H2O. Acta Crystallographica, B38, 703706. CrossRefGoogle Scholar
Daniel, P., Bulou, A., Rousseau, M., Nouet, J., Fourquet, J.L., Leblanc, M. and Burriel, R. (1990) A study of the structural phase transitions in AlF3: X-ray powder diffraction, DSC and Raman scattering investigations of the lattice dynamics and phonon spectrum. Journal of Physics: Condensed Matter, 2, 56635677. Google Scholar
Darriet, J. (1973) Structure cristalline de la phase LiVTeO5 . Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 96,9799 Google Scholar
Darriet, J. and Galy, J. (1973) Tellurium (IV) vanadium (V) oxide, Te2V2O9. Crystal Structure Communications, 2,237238.Google Scholar
Dawson, B. (1953) The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62) · 14H2O. Acta Crystallographica, 6, 113126. CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction to the Rock-Forming Minerals.Longman, London, 528 pp.Google Scholar
Delage, C., Carpy, A. and Goursolle, M. (1982) The TeO2—SeO2 system. Crystal structure of Te2Se2O8 . Comptes Rendus Hebdomadaires des Séances de ‘Academie des Sciences, Serie C, 295,981983 Google Scholar
Denes, G., Pannetier, J. and Lucas, J. (1980) About SnF2stannous fluoride. II. Crystal structure of β- and γ-SnF2 . Journal of Solid State Chemistry, 33,111 CrossRefGoogle Scholar
Dewan, J.C., Edwards, A.J., Jones, G.R. and Young, I.M. (1978) Crystal structure of dilead tritellurate(IV). Dalton Transactions, 1978,15281532 CrossRefGoogle Scholar
Dityat'yev, O.A., Berdonosov, P.S., Dolgikh, V.A., Aldous, D.W. and Lightfoot, P. (2006) On the crystal structures of SrTeO3 . Solid State Sciences, 8, 830835. CrossRefGoogle Scholar
Djemel, M., Abdelhedi, M., Dammak, M. and Cousson, A. (2010) Synthesis and crystal structure of (Cs3.5Rb0.5)((Se0.85S0.15)O3)2(Te(OH)6)3 . X-ray struc¬ture analysis online, 26,7374 CrossRefGoogle Scholar
Djemel, M., Abdelhedi, M., Zouari, N., Dammak, M. and Kolsi, A.W. (2012) Structural and conductivity studies of CsK(SO4)0.32(SeO4)0.68Te(OH)6 . Journal of Solid State Chemistry, 196,267–273CrossRefGoogle Scholar
Doi, Y., Suzuki, R., Hinatsu, Y and Ohoyama, K. (2009) Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M=Mn and Zn). Journal of Physics: Condensed Matter, 21 046006–1.046006-6.Google Scholar
Dolgikh, V.A., Kholodkovskaya, L.N. and Popovkin, B.A. (1996) Crystal structure of Bi5TeO8.5Br2: coordin¬ation of Te(IV) atoms in layer Sillén phases. Zhurnal Neorganicheskoi Khimii, 41,970975 Google Scholar
Dollase, W.A. (1965) Reinvestigation of the structure of low cristobalite. Zeitschrift für Kristallographie, 121,369377 CrossRefGoogle Scholar
Donnay, G., Stewart, J.M. and Preston, H. (1970) The crystal structure of sonoraite, Fe3+Te4+O3(OH) · H2O. Tschermaks mineralogische und petrographische Mitteilungen, 14,2744 CrossRefGoogle Scholar
Downs, R.T. and Palmer, D.C. (1994) The pressure behavior of α cristobalite. American Mineralogist, 79, 914. Google Scholar
Drewes, D. and Krebs, B. (2005) Synthesis and structure of a novel type of polyoxomolybdate lanthanide complex: ((Ln(H2O)6)2(TeMo6O24)) (Ln = Ho, Yb). Zeitschrift für anorganische und allgemeine Chemie, 631,25912594 CrossRefGoogle Scholar
Drewes, D., Limanski, E.M. and Krebs, B. (2004a) A series of novel lanthanide polyoxometalates: conden¬sation of building blocks dependent on the nature of rare earth cations. Dalton Transactions,2004, 20872091.CrossRefGoogle Scholar
Drewes, D., Limanski, E.M. and Krebs, B. (2004b) The Anderson type anion (TeMo6O24)6∼ — a multientate ligand for trivalent rare earth cations. European Journal of Inorganic Chemistry, 2004,48494853 CrossRefGoogle Scholar
Driess, M., von Haenisch, C. and Merz, K. (1999) The first orthotelluric acid polysilylesters: synthesis and crystal structure of ((Me3SiO)8Te2O2) and ((Me4Si2O2)3Te). Zeitschrift für anorganische und allgemeine Chemie, 625,493496 3.0.CO;2-P>CrossRefGoogle Scholar
Drits, V.A., Kashaev, A.A. and Sokolova, G.V. (1975) Crystal-structure of cymrite. Kristallografiya, 20,280286 Google Scholar
Dubler, E., Vedani, A. and Oswald, H.R. (1983) New structure determination of murdochite, Cu6PbO8. Acta Crystallographica, C39, 11431146. Google Scholar
Durif, A. and Averbuch-Pouchot, M.T. (1981) Crystal structure of a silver phosphate-tellurate: Te(OH)6 · 2Ag2HPO4. Zeitschrift für anorganische und allge-meine Chemie, 472, 129129.CrossRefGoogle Scholar
Durif, A., Averbuch-Pouchot, M.T. and Guitel, J.C. (1979) Structures de deux phosphotellurates: Te(OH)6 · 2(NH4)2HPO4 et Te(OH)6 · Na2HPO4 · H2O. Acta Crystallographica, B, 35,14441447.CrossRefGoogle Scholar
Durif, A., Averbuch-Pouchot, M.T. and Guitel, J.C. (1982) (NH4)4P4O12 · 2Te(OH)6 · 2H2O, the first example of a tetrametaphosphate-tellurate. Journal of Solid State Chemistry, 41,153159 CrossRefGoogle Scholar
Dušek, M. and Loub, J. (1988) X-ray powder diffraction data and structure refinement of TeO3 . Powder Diffraction, 3, 175176. CrossRefGoogle Scholar
Dutreilh, M., Thomas, P., Champarnaud-Mesjard, J.C. and Frit, B. (2001) Crystal structure of a new gallium tellurite: Ga2Te4O11. Solid State Sciences, 3, 423431. CrossRefGoogle Scholar
Dytyatyev, O.A. and Dolgikh, V.A. (1999) On the crystal structure of a new binary oxide Sr3Te4O11. Materials Research Bulletin, 34,733740 CrossRefGoogle Scholar
Effenberger, H. (1977) Verfeinerung der Kristallstruktur von synthetischem Teineit, CuTeO3 · 2H2O. Tschermaks mineralogische und petrographische Mitteilungen, 24,287298.CrossRefGoogle Scholar
Effenberger, H. (1986) Die Kristallstrukturen von drei Modifikationen des Cu(SeO3). Zeitschrift für Kristallographie, 175,6172.Google Scholar
Effenberger, H. and Tillmanns, E. (1993) The crystal structure of K2﹛Cu[TeO4(OH)2]﹜ · H2O.. Zeitschrift für Kristallographie, 205,4153 Google Scholar
Effenberger, H., Zemann, J. and Mayer, H. (1978) Carlfriesite; crystal structure, revision of chemical formula, and synthesis. American Mineralogist, 63, 847852..Google Scholar
Efremov, V.A., Tyulin, A.V. and Trunov, V.K. (1984) The structure of a new modification of Nd2WO6 . Kristallografiya, 29,673676.Google Scholar
Einstein, F.W. and Willis, A.C. (1981) Structure of tellurium (IV) pyrosulphate. Acta Crystallographica, B37, 218220. CrossRefGoogle Scholar
Elerman, Y (1993) Crystal structure of two polymorphous types of SrTeO3. Turkish Journal of Physics, 17, 465–73.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1992) The crystal structure of alumotantite: its relationship to the structures of simpsonite. The Canadian Mineralogist, 30,653662.Google Scholar
Evans, H.T. (1948) The crystal structures of ammonium and potassium molybdotellurates. Journal of the American Chemical Society, 70,12911292.CrossRefGoogle Scholar
Evans, H.T. (1974) The molecular structure of the hexamolybdotellurate ion in the crystal complex with telluric acid (NH4)6[TeMo6O24] · Te(OH)6 · 7H2O. Acta Crystallographica, B30, 20952100. CrossRefGoogle Scholar
Evstigneeva, M.A., Nalbandyan, V.B., Petrenko, A.A., Medvedev, B.S. and Kataev, A.A. (2011) A new family of fast sodium ion conductors: Na2M2TeO6 (M = Ni, Co, Zn, Mg). Chemistry of Materials, 23, 11741181.CrossRefGoogle Scholar
Falck, L. and Lindqvist, O. (1978) X-ray refinement of the structure of cubic telluric acid.Acta Crystallographica, B34, 31453146. CrossRefGoogle Scholar
Falck, L., Lindqvist, O. and Mark, W. (1978a) Tricopper(II) tellurate(VI). Acta Crystallographica, B34, 896897. CrossRefGoogle Scholar
Falck, L., Lindqvist, O., Mark, W., Philippot, E. and Moret, J. (1978b) The crystal structure of CuTeO4. Acta Crystallographica, B34, 14501453. CrossRefGoogle Scholar
Feger, C.R. and Kolis, J.W. (1998a) Na3Mn4Te2O12 . Acta Crystallographica, C54, 10551057..Google Scholar
Feger, C.R. and Kolis, J.W. (1998b) V2MnTeO7 . Acta Crystallographica, C54, 12171219..Google Scholar
Feger, C.R. and Kolis, J.W. (1998c) Synthesis and characterization of two new copper tellurites, Ba2Cu4Te4O11Cl4 and BaCu2Te2O6Cl2, in supercritical H2O. Inorganic Chemistry, 37,40464051..CrossRefGoogle Scholar
Feger, C.R., Schimek, G.L. and Kolis, J.W. (1999) Hydrothermal synthesis and characterization of M2Te3O8 (M=Mn,Co, Ni, Cu, Zn): a series of compounds with the spiroffite structure. Journal of Solid State Chemistry, 143,246253.CrossRefGoogle Scholar
Fischer, R. and Pertlik, F. (1975) Verfeinerung der Kristallstruktur des Schafarzikits, FeSb2O4. Tschermaks mineralogische und petrographische. Mitteilungen, 22,236241.Google Scholar
Fischer, R., Pertlik, F. and Zemann, J. (1975) The crystal structure of mroseite, CaTeO2(CO3). The Canadian Mineralogist, 13,383387.Google Scholar
Fischer, W. and Koch, E. (2006) Symbols and properties of lattice complexes. Pp. 848872 in: International Tables for Crystallography, Volume A.Chapter 14.2. International Union for Crystallography.CrossRefGoogle Scholar
Fleet, M.E. (1972) The crystal structure of pararammels- bergite, NiAs2. American Mineralogist, 57, 19. Google Scholar
Folger, F. (1975a) Die Kristallstruktur von Li2TeO3. Zeitschrift für anorganische und allgemeine Chemie, 411,103110.CrossRefGoogle Scholar
Folger, F. (1975b) Die Kristallstruktur von BaTeO3. Zeitschrift für anorganische und allgemeine Chemie, 411,111117..CrossRefGoogle Scholar
Forestier, P. and Goreaud, M. (1991) Structure cristalline de l'oxyde a valence mixte TeMo5O16 orthorombique. Comptes Rendus Hebdomadaires des Seances de ’Academie des Sciences, Serie 2, 312,11411145.Google Scholar
Frau, A.F., Kim, J.H. and Halasyamani, P.S. (2008) Na3Ga3Te2O12: Synthesis, single crystal structure and characterization.. Solid State Sciences, 10, 12631268. CrossRefGoogle Scholar
Friauf, J.B. (1927) The crystal structures of two intermetallic compounds. Journal of the American Chemical Society, 49,31073114.CrossRefGoogle Scholar
Friese, K.,Halasyamani, P.S., Tolkiehn, M. and Grzechnik, A. (2011) A high-pressure single-crystal synchrotron diffraction study of NH4RbTe4O9 · 2H2O: stability of three different TeOx coordination poly- hedra. Acta Crystallographica, C i45i49.Google Scholar
Frit, B. (1975) Structure crystalline du tellurate d'indium In2TeO6. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie C,281, 769-772.Google Scholar
Frit, B. and Jaymes, M. (1974) Synthese et étude structurale des tellurates de bismuth. Bulletin de la Société Chimique de France, 1974,402406.Google Scholar
Frit, B. and Mercurio, D. (1980) Structure cristalline de Tl2TeO3 stéréochimie des éléments Tl(I) et Te(IV). Revue de Chimie Minérale, 17,192201.Google Scholar
Frit, B., Pressigout, R. and Mercurio, D. (1975) Synthese et étude structurale du tellurate(VI) de thallium(III) Tl2TeO6.. Materials Research Bulletin,, 10, 13051312. CrossRefGoogle Scholar
Frit, B., Roult, G. and Galy, J. (1983) Cristallochimie de TlIII6TeVIO12 et Tl6ITeVIO6E6: un exemple original de l'activité stéréochimique de la paire éléctronique 6s2 (E)du thallium(I). Journal of Solid State Chemistry, 48, 246255.CrossRefGoogle Scholar
Fu, W.T. and Ijdo, D.J.W.. (2008) Chiolite-like Ca5Te3O14: An X-ray and neutron diffraction study. Journal of Solid State Chemistry, 181,12361239 CrossRefGoogle Scholar
Fu, W.T., Au, Y.S., Akerboom, S. and Ijdo, D.J.W.. (2008) Crystal structures and chemistry of double perovskite. Ba2M11M'Y1O6 (M=Ca, Sr, M =Te, W, U). Journal of Solid State Chemistry, 181,25232529 CrossRefGoogle Scholar
Fuchs, J., Loederich, R. and Pickardt, J. (1982) Struktur und schwingungsspektrum des tetraguanidinium-ditellurats, [C(NH2)3]4Te2O6(OH)4 . Zeitschrift für Naturforschung B, 37,587593 CrossRefGoogle Scholar
Fujita, T., Kawada, I. and Kato, K. (1977) Raspite from Broken Hill. Acta Crystallographica, B33, 162164. CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99,965975 CrossRefGoogle Scholar
Galy, J. and Lindqvist, O. (1979) The crystal structure of Te3Nb2O11. Journal of Solid State Chemistry, 27,279286 CrossRefGoogle Scholar
Galy, J. and Meunier, G. (1971) À propos de la cliffordite UTe3O8. Le systeme UO3-TeO2 à 700°C. Structure cristalline de UTe3O9 . Acta Crystallographica, B27, 608616. CrossRefGoogle Scholar
Gao, B., Liu, S.X., Xie, L.H., Yu, M., Zhang, C.D., Sun, C.Y. and Cheng, H.Y. (2006) Hydrothermal assembly of (3,6)-connected networks with classical mineral structures constructed from Anderson-type hetero-polymolybdate and metal cations. Journal of Solid State Chemistry, 179,16811689 CrossRefGoogle Scholar
Gao, B., Liu, S.X., Zhang, C.D., Xie, L.H., Sun, C.Y. and Yu, M. (2007) Hydrothermal assembly of pyrite-related framework: (NH4)2((Ni(H2O)3)2(TeW6O24)) (H2O). Journal of Coordination Chemistry, 60, 911918. CrossRefGoogle Scholar
Gao, J., Yan, J., Beeg, S., Long, D. and Cronin, L. (2012) Assembly of molecular “layered” heteropolyoxo-metalate architectures. Angewandte Chemie International Edition, 51,33733376 CrossRefGoogle ScholarPubMed
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477 CrossRefGoogle Scholar
Gaudin, E., Chaminade, J.P., El Abed, A. and Darriet, J. (2001) Indium tellurium trioxide chloride, InTeO3Cl. Acta Crystallographica, C57, 10041005. Google Scholar
Gavarri, J.R. and Weigel, D. (1975) Oxydes de plomb. I. Structure crystalline du minium, Pb3O4, à température ambiante (293 K). Journal of Solid State Chemistry, 13,252257 CrossRefGoogle Scholar
Geller, S. (1967) Crystal chemistry of garnets. Zeitschrift für Kristallographie, 125,147 CrossRefGoogle Scholar
Geller, S. (1971) Refinement of the crystal structure of cryolithionite, ﹛Na3﹜[Al2](Li3)F12 . American Mineralogist, 56, 1823 Google Scholar
Genkina, E.A. (1992) Accurate definition of LiSbO3crystal structure. Kristallografiya, 37, 356358. Google Scholar
Glazer, A.M. (1972) The classification of tilted octahedra in perovskites. Acta Crystallographica, B28, 33843392. CrossRefGoogle Scholar
Goodey, J., Broussard, J. and Halasyamani, P.S. (2002) Synthesis, structure and characterization of a new second-harmonic-generating tellurite: Na2TeW2O9. Chemistry of Materials, 14,31743180 CrossRefGoogle Scholar
Goodey, J., Ok, K.M., Broussard, J., Hofmann, C., Escobedo, F.V. and Halasyamani, P.S. (2003) Syntheses, structures and second-harmonic generating properties in new quaternary tellurites. A2TeW3O12(A = K, Rb or Cs). Journal of Solid State Chemistry, 175,312 CrossRefGoogle Scholar
Govett, G.J.S.. (1983) Rock Geochemistry in Mineral Exploration; Handbook of Exploration Geochemistry.Elsevier, New York, 461 pp.Google Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98,785811 CrossRefGoogle Scholar
Grice, J.D. (1989) The crystal structure of magnolite, Hg21+Te4+O3 . The Canadian Mineralogist, 27,133136 Google Scholar
Grice, J.D. and Roberts, A.C. (1995) Frankhawthorneite, a unique HCP framework structure of a cupric tellurate. The Canadian Mineralogist, 33,649654 Google Scholar
Grice, J.D., Groat, L.A. and Roberts, A.C. (1996) Jensenite, a cupric tellurate framework structure with two coordinations of copper. The Canadian Mineralogist, 34,5559 Google Scholar
Grigor'ev, M.S., Struchkov, Yu.T., Fedoseev, A.M., Yusov, A.B. and Yanovskii, A.I. (1992) Synthesis, X-ray and luminescence study of some rare earths with iodo- and telluromolybdate-ions complexes. Zhurnal Neorganicheskoi Khimii, 37,25072514 Google Scholar
Grundler, P.V., Brugger, J., Meisser, N., Ansermet, S., Borg, S., Etschmann, B., Testemale, D. and Bolin, T. (2008) Xocolatlite, Ca2Mn24+Te2O12 · H2O, a new tellurate related to kuranakhite: description and measurement of Te oxidation state by XANES spectroscopy. American Mineralogist, 93, 19111920 CrossRefGoogle Scholar
Grzechnik, A., Halasyamani, P.S., Chang, H.Y. andFriese, K. (2009) Twinned crystal structure and compressibil¬ity of TlTeVO4 . Journal of Solid State Chemistry, 182,15701574 CrossRefGoogle Scholar
Grzechnik, A., Halasyamani, P.S., Kim, J.-H. and Friese, K. (2010) (NH4)2WTe2O8 at 5.09 GPa: A single-crystal study using synchrotron radiation. Acta Crystallographica, C66, i79-i81.Google Scholar
Gu, Q.H., Hu, C.L., Zhang, J.H. and Mao, J.G. (2011) A series of new phases in the alkali metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O systems. Dalton Transactions, 40, 25622569. CrossRefGoogle ScholarPubMed
Guesdon, A. and Raveau, B. (2000) A series of Mo (VI) monophosphates involving the lone pair cation Te(IV): A2TeMo2O6(PO4)2 (A = K, Rb, Tl, Cs). Chemistry of Materials, 12,22392243..CrossRefGoogle Scholar
Haines, J. and Léger, J.M. (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Physical Review, B17, 1114411154.CrossRefGoogle Scholar
Haines, J., Léger, J.M., Chateau, C. and Pereira, A.S. (2000) Structural evolution of rutile-type and CaCl2- type germanium dioxide at high pressure. Physics and Chemistry of Minerals, 27,575582.CrossRefGoogle Scholar
Haley, M.J., Wallwork, S.C., Duffin, B., Logan, N. and Addison, C.C. (1997) Hexa-μ-nitrato-μ4-oxo- tetraberyllium. Acta Crystallographica, C53, 829830 Google Scholar
Hanke, K.(1967) Zinktellurit: Kristallstruktur und Beziehungen zu einigen Seleniten. Naturwissenschaften, 54,199199..CrossRefGoogle Scholar
Hanke, K., Kupcik, V and Lindqvist, O. (1973) The crystal structure of CuTe2O5. Acta Crystallographica, B29, 963970..CrossRefGoogle Scholar
Harari, D., Bernier, J.C. and Poix, P. (1972) Contribution a Pétude de deux téllurates de type perovskite. Journal of Solid State Chemistry, 5, 382390. CrossRefGoogle Scholar
Harrison, W.T.A.. (2014) Crystal structure of ammonium divanadium(IV,V) tellurium(IV) heptaoxide.. Acta Crystallographica, E70, 2730..Google Scholar
Hawthorne, F.C. (1984) The crystal structure of mandar- inoite, Fe23+Se3O9 · 6H2O.. The Canadian Mineralogist, 22,475480 Google Scholar
Hawthorne, F.C. (2014) The structure hierarchy hypoth¬esis. Mineralogical Magazine, 78,9571027.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of cryolite. The Canadian Mineralogist, 13,377382 Google Scholar
Hawthorne, F.C., Ercit, T.S. and Groat, L.A. (1986) Structures of zinc selenite and copper selenite. Acta Crystallographica, C42, 12851287. Google Scholar
Hawthorne, F.C., Burns, P.C. and Grice, J.D. (1996) The crystal chemistry of boron. Pp. 41115 in: Boron: Mineralogy, Petrology, and Geochemistry . (L.M. Anovitz and E.S. Grew, editors) Reviews in Mineralogy & Geochemistry, 33. Mineralogical Society of America, Washington DC..CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significanc. (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors) Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hazen, R.M., Finger, L.W. and Mariathasen, J.W.E. (1985) High-pressure crystal chemistry of scheelite-type tungstates and molybdates. Journal of Physics and Chemistry of Solids, 46,253263.CrossRefGoogle Scholar
He, X.H., Huang, C.C., Sheng, L.D. and Qian, L.Z. (2010) Synthesis and characterization of new open-framework vanadium tellurite featuring an unprece¬dented (3,7)-connected network: K3((VVO4) (VIVO)4(TeO3)4) · (H2O)4 . Crystal Growth and Design, 10, 20212024. Google Scholar
Hector, A.L., Hill, N.J., Levason, W. and Webster, M. (2002) X-Ray crystal structures of hexa-oxotellurate complexes of ruthenium(VI) and silver(III): Na6[RuO2﹛TeO4(OH)22] · 16H2O and Na5[Ag ﹛TeO4(OH)22] · 16H2O. Zeitschriftfür anorganische und allgemeine Chemie, 628,815818 3.0.CO;2-U>CrossRefGoogle Scholar
Helmholtz, L. (1936) The crystal structure of the low temperature modification of thallous iodide. Zeitschrift für Kristallographie, 95,129137 Google Scholar
Hepworth, M.A., Jack, K.H., Peacock, R.D. and Westland, G.J. (1957) The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium. Acta Crystallographica, 10, 6369. CrossRefGoogle Scholar
Hesse, K.-F. and Liebau, F. (1980) Crystal chemistry of silica-rich barium silicates. III. Refinement of the crystal structures of the layer silicates Ba2[Si4O10] (l) (sanbornite) and Ba2[Si4O10] (h). Zeitshcrift für Kristallografie, 153,3341 Google Scholar
Hill, R.J. (1985) Refinement of the structure of ortho-rhombic PbO (massicot) by Rietveld analysis of neutron powder diffraction data. Acta Crystallographica, C41, 12811284. Google Scholar
Hoekstra, H.R. and Marshall, R.H. (1967) Some uranium-transition metal double oxides. Advances in Chemistry, 71, 211227. CrossRefGoogle Scholar
Hofmann, W. and Jäniche, W. (1935) Der Strukturtyp von Aluminiumborid, AlB2 . Naturwissenschaften, 23, 851.CrossRefGoogle Scholar
Höss, P. and Schleid, T (2007a) Y2TeO6 with the La2TeO6-type structure. Acta Crystallographica, E63, i133i135.Google Scholar
Höss, P. and Schleid, T .(2007b) Sc2Te5O13 und Sc2TeO6: die ersten Oxotellurate des Scandiums. Zeitschrift für anorganische und allgemeine Chemie, 633,13911396 CrossRefGoogle Scholar
Höss, P., Starkulla, G. and Schleid, T (2005) Lutetium(III) oxotellurate(IV), Lu2Te40n . Ada Crystallographica, E61, i113i115.Google Scholar
Höss, P., Osvet, A., Meister, E., Batentschuk, M., Winnacker, A. and Schleid, T (2008) Synthesis, crystal structures and luminescence properties of the Eu3+-doped yttrium oxotellurates(IV) Y2Te4O11 and Y2Te5O13 . Journal of Solid State Chemistry, 181,27832788 CrossRefGoogle Scholar
Hottentot, D. and Loopstra, B.O. (1979) Structures of calcium tellurate, CaTeO4, and strontium tellurate, SrTeO4 . Acta Crystallographica, B35, 728729. CrossRefGoogle Scholar
Hottentot, D. and Loopstra, B.O. (1983) The structure of tribarium undecaoxotetratellurate (IV), Ba3Te4O1 . Acta Crystallographica, C39, 320322. Google Scholar
Hou, J.-Y., Huang, C.-C., Zhang, H.-H., Yang, Q.-Y., Chen, Y.-P. and Xu, J.-F. (2005) Barium divanadium(V) tellurite(IV). Acta Crystallographica, C61, i59i60.Google Scholar
Hou, J., Huang, C.C., Zhang, H., Tu, C., Sun, R. and Yang, Q. (2006) A new noncentrosymmetric tellurite: BaMo2Te2O11(H2O) with (Mo(1)Mo(2)O10)n spiral chains. Journal of Molecular Structure, 785,3742 CrossRefGoogle Scholar
Housley, R.M., Kampf, A.R., Mills, S.J., Marty, J. and Thorne, B. (2011) The remarkable occurrence of rare secondary minerals at Otto Mountain near Baker, California - including seven new species. Rocks & Minerals, 86, 132142. CrossRefGoogle Scholar
Howard, C.J. and Carpenter, M.A. (2010) Octahedral tilting in cation-ordered Jahn-Teller distorted perovskites — a group-theoretical analysis. Acta Crystallographica, B33, 4050. CrossRefGoogle Scholar
Howard, C.J., Sabine, T.M. and Dickson, F. (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallographica, B47, 462468. CrossRefGoogle Scholar
Howard, C J., Kennedy, B J. and Woodward, P.M. (2003) Ordered double perovskites — a group-theoretical analysis. Acta Crystallographica, B59, 463471.CrossRefGoogle Scholar
Huminicki, D.M.C.. and Hawthorne, F.C. (2001) Refinement of the crystal structure of swedenborgite. The Canadian Mineralogist, 39,153158 CrossRefGoogle Scholar
Hyde, B.G. and Andersson, S. (1989) Inorganic Crystal Structures.Wiley-Interscience. 430 pp.Google Scholar
Isasi, J. (2001) New MM'O4 oxides derived from the rutile type: synthesis, structure and study of magnetic and electronic properties. Journal of Alloys and Compounds, 322,8996 CrossRefGoogle Scholar
IUPAC (1997) Compendium of Chemical Terminology, 2ndedition. [the “Gold Book“]. Compiled by A.D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, UK. XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.CrossRefGoogle Scholar
Ivanov, S.A., Nordblad, P., Mathieu, R., Tellgren, R. and Ritter, C. (2010a) Neutron diffraction studies and the magnetism of an ordered perovskite: Ba2CoTeO6 . Dalton Transactions, 39,54905499 CrossRefGoogle Scholar
Ivanov, S.A., Nordblad, P., Mathieu, R., Tellgren, R. and Ritter, C. (2010b) Structural and magnetic properties of the ordered perovskite Pb2CoTeO6. Dalton Transactions, 39, 1113611148 CrossRefGoogle ScholarPubMed
Ivanov, S.A., Mathieu, R., Nordblad, P., Politova, E., Tellgren, R., Ritter, C. and Proidakova, V (2012a) Structural and magnetic properties of Mn3_xCdxTe06(x = 0,1, 1.5 and 2). Journal of Magnetism and Magnetic Materials, 324,16371644 CrossRefGoogle Scholar
Ivanov, S.A., Tellgren, R., Ritter, C., Nordblad, P., Mathieu, R., Andre, G., Golubko, N.V., Politova, E.D. and Weil, M. (2012b) Temperature-dependent multi-k magnetic structure in multiferroic Co3TeO6 . Materials Research Bulletin, 47,6372 CrossRefGoogle Scholar
Iwanaga, D., Inaguma, Y and Itoh, M. (1999) Crystal structure and magnetic properties of B-site ordered perovskite-type oxides A2CuB'O6 . (A = Ba, Sr; B’ = W, Te). Journal of Solid State Chemistry, 147,291295 CrossRefGoogle Scholar
Iwanaga, D., Inaguma, Y and Itoh, M. (2000) Structure and magnetic properties of Sr2NiAO6 . (A= W, Te). Materials Research Bulletin, 35, 449457 CrossRefGoogle Scholar
Jacoboni, C., Leble, A. and Rousseau, J.J. (1981) Détermination précise de la structure de la chiolite Na5Al3F14 et étude par R.P.E. de Na5Al3F14:Cr3+. Journal of Solid State Chemistry, 36, 297304. CrossRefGoogle Scholar
Jacobson, A.J., Scanlon, J.C., Poeppelmeier, K.R., Longo, J.M. and Cox, D.E. (1981) The preparation and characterization of Ba3Te2O9: a new oxide structure. Materials Research Bulletin, 16, 359367. CrossRefGoogle Scholar
Jeansannetas, B., Thomas, P., Champarnaud-Mesjard, J.C. and Frit, B. (1997) Crystal structure of Tl2Te3O7 . Materials Research Bulletin, 32,5158 CrossRefGoogle Scholar
Jeansannetas, B., Thomas, P., Champarnaud-Mesjard, J.C. and Frit, B. (1998) Crystal structure of α-Tl2Te2O5 . Materials Research Bulletin, 33,17091716 CrossRefGoogle Scholar
Jensen, E.P. and Barton, M.D. (2000) Gold deposits related to alkaline magmatism. Reviews in Economic Geology, 13, 279314. Google Scholar
Jiang, H.-L. and Mao, J.-G. (2006a) [Cd2(Te6O13)] [Cd2Cl6] and Cd7Cl8(Te7O17): Novel tellurium(IV) oxide slabs and unusual cadmium chloride architec¬tures. Inorganic Chemistry, 45,717721 CrossRefGoogle Scholar
Jiang, H.-L. and Mao, J.-G. (2006b) New members in the Ni(n+1)(QO3)nX2 family: unusual 3D network based on Ni4ClO3 cubane-like clusters in Ni7(TeO3)6Cl. Inorganic Chemistry, 45,75937599 CrossRefGoogle Scholar
Jiang, H. and Mao, J.-G. (2006c) Synthesis, crystal structure and characterization of the barium zinc tellurate disilicate: Ba3Zn6[TeO6][Si2O7]2 . Zeitschrift für anorganische und allgemeine Chemie, 632,20532057 CrossRefGoogle Scholar
Jiang, H. and Mao, J.-G. (2008) Syntheses, crystal structures and optical properties of the first strontium selenium(IV) and tellurium(IV) oxychlorides: Sr3(Se3O3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4 . Journal of Solid State Chemistry, 181,345354 CrossRefGoogle Scholar
Jiang, H., Feng, M.L. and Mao, J.-G. (2006) Synthesis, crystal structures and characterizations of BaZn (SeO3)2 and BaZn(TeO3)Cl2 . Journal of Solid State Chemistry, 179,19111917 CrossRefGoogle Scholar
Jiang, H.-L., Ma, E. and Mao, J.-G. (2007a) New luminescent solids in the Ln-W-(Mo)-Te-O (Cl) systems. Inorganic Chemistry, 46,70127023 CrossRefGoogle ScholarPubMed
Jiang, H.-L., Xie, Z. and Mao, J.-G. (2007b) Ni3(Mo2O8) (XO3) (X=Se, Te): The first nickel selenite- and tellurite-containing Mo4 clusters. Inorganic Chemistry, 46,64956501 CrossRefGoogle ScholarPubMed
Jiang, H., Kong, F. and Mao, J.-G. (2007c) Synthesis, crystal and band structures, and optical properties of a new lanthanide-alkaline earth tellurium(IV) oxide: La2Ba(Te3O8)(TeO3)2 . Journal of Solid State Chemistry, 180,17641769 CrossRefGoogle Scholar
Jiang, H., Huang, S.P., Fan, Y., Mao, J.-G. and Cheng, W.D. (2008) Explorations of new types of second order nonlinear optical materials in Cd(Zn)-VV-TeIV-O systems. Chemistry - A European Journal, 14,19721981 CrossRefGoogle ScholarPubMed
Johansson, G.B. (1978) Diammonium ditellurium (IV) pentaoxide dihydrate. Acta Crystallographica, B34, 28302832. CrossRefGoogle Scholar
Johansson, G.B. and Lindqvist, O. (1976) The crystal structure of Al2(OH)2TeO3SO4. Acta Crystallographica, B32, 407411. CrossRefGoogle Scholar
Johansson, G.B. and Lindqvist, O. (1977) The crystal structure of ammine copper (II) tellurate (IV) mono-hydrate Cu(NH3)TeO3 · H2O. Acta Crystallographica, B33, 24182421. CrossRefGoogle Scholar
Johansson, G.B. and Lindqvist, O. (1978) The crystal structure of dipotassium tellurate (IV) trihydrate, K2TeO3 · 3H2O. Acta Crystallographica, B34, 29592962. CrossRefGoogle Scholar
Johansson, G.B., Lindqvist, O. and Moret, J. (1979) Diammonium tellurium (VI) dioxide tetrahydroxide. Acta Crystallographica, B35, 16841686. CrossRefGoogle Scholar
Johnston, M.G. and Harrison, W.T. (2002) Manganese tellurite, β-MnTe2O5 . Acta Crystallographica, E58, i59i61.Google Scholar
Johnston, M.G. and Harrison, W.T.A.. (2007) Li (VO2)3(TeO3)2 . Acta Crystallographica, C63, i57i59.Google Scholar
Johnsson, M. and Törnroos, K.W. (2003a) A synthetic zinc tellurium oxochloride, Zn2(TeO3)Cl2 . Acta Crystallographica, C59, i53i54.Google Scholar
Johnsson, M. and Törnroos, K.W. (2003b) Synthesis and crystal structure of the layered compound CuZn(TeO3) Cl2 . Solid State Sciences, 5, 263266. CrossRefGoogle Scholar
Johnsson, M., Törnroos, K.W., Mila, F. and Millet, P. (2000) Tetrahedral clusters of copper(II): crystal structures and magnetic properties of Cu2Te2O5X2 . (X=Cl, Br). Chemistry of Materials, 12, 28532857. CrossRefGoogle Scholar
Johnsson, M., Törnroos, K.W., Lemmens, P. and Millet, P. (2003) Crystal structure and magnetic properties of a new two-dimensional S=1 quantum system Ni5(TeO3)3X2 . (X= Cl, Br). Chemistry of Materials, 15, 6873. CrossRefGoogle Scholar
Johnsson, M., Lidin, S., Törnroos, K.W., Bürgi, H.B. and Millet, P. (2004) Host-guest compounds in the family of tellurium-nickel oxohalogenides. Angewandte Chemie International Edition, 43,42924295 CrossRefGoogle ScholarPubMed
Kalinina, I.V., Izarova, N.V. and Kortz, U. (2012) Bis [tetraruthenium(IV)]-containing polyoxometalates [ ﹛RuI V4O6(H2O)92Sb2W20O68(OH)2]4- and [﹛Ru4 vO6(H2O)92﹛Fe(H2O)22﹛p-TeW9O332Hr. Inorganic Chemistry, 51, 74427444. CrossRefGoogle Scholar
Kampf, A.R. and Mills, S.J. (2011) The role of hydrogen in tellurites: crystal structure refinements of juabite, poughite and rodalquilarite. Journal of Geosciences, 56, 235247. Google Scholar
Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J. and Thorne, B. (2010a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra. American Mineralogist, 95, 13291336 CrossRefGoogle Scholar
Kampf, A.R., Marty, J. and Thorne, B. (2010b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: II. Housleyite, Pb6CuTe4O18(OH)2, anew mineral with Cu-Te octahedral sheets. American Mineralogist, 95, 13371342. CrossRefGoogle Scholar
Kampf, A.R., Housley, R.M. and Marty, J. (2010c) Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb6(Te26+O10)(CO3) Cl2(H2O), the first mineral with edge-sharing octahe¬dral tellurate dimers. American Mineralogist, 95, 15481553. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010d) Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate. American Mineralogist, 95, 15541559. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010e) Lead-tellurium oxysalts from Otto Mountain near Baker, California: V Timroseite, Pb2Cu2+5(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu2 +(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets. American Mineralogist, 95, 15601568. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J. and Thorne, B. (2010f) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb3Te4+O4Cl2, the Te analog of perite and nadorite. American Mineralogist, 95, 15691573. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S. and Spratt, J. (2012) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite. American Mineralogist, 97, 212219. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J.,Housley, R.M. and Marty, J. (2013 a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VIII. Fuettererite, Pb3Cu2+6Te6+O6(OH)7Cl5, a new mineral with double spangolite-type sheets. American Mineralogist, 98, 506511. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J.,Housley, R.M. and Marty, J. (2013b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: IX. Agaite, Pb3Cu2+Te6+O5(OH)2(CO3), a new mineral with CuO5-TeO6 polyhedral sheets.. American Mineralogist,, 98, 512517. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J.,Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013c) Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu2 +4Te26+O10(OH)2(SO4)(H2O), anew mineral with thick HCP layers.. American Mineralogist, 98, 13151321. CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J.,Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013d) Lead-tellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, (Ca,Pb)Cu2+Te6+O5(H2O), a new mineral with HCP stair-step layers.. American Mineralogist, 98, 16171623. CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Mills, S.J.,Housley, R.M. and Rossman, G.R. (2016) Lead-tellurium oxysalts from Otto Mountain near Baker, California: XII. Andychristyite, PbCu2+Te6+O5(H2O), a new mineral with HCP stair-step layers. Mineralogical Magazine,DOI: 10.1180/minmag.2016.080.042.CrossRefGoogle Scholar
Kashi, T., Yasiu, Y., Moyoshi, T., Sato, M., Kakurai, K., Iikubo, S. and Igawa, N. (2008) Crystal structure and magnetic properties of CoZn(TeO3)Br2. Journal of the Physical Society of Japan, 77,084707-1-084707-084707.CrossRefGoogle Scholar
Kasper, H.M. (1969) LnCrTeO6 - a new series of compounds based on the PbSb2O6 structure. Materials Research Bulletin, 4, 3337. CrossRefGoogle Scholar
Kear, B.H. and Wilsdorf, H.G.F.. (1962) Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys. Transactions of the AIME, 224,382386 Google Scholar
Keggin, J.F. (1934) The structure and formula of 12-phosphotungstic acid. Proceedings of the Royal Society of London, Series A, 144,75100 Google Scholar
Kholodkovskaya, L.N., Dolgikh, V.A. and Popovkin, B. A. (1991) Crystal structure of bismuth-tellurium oxobromide Bi0 97Te03Bro 90 Zhurnal Neorganicheskoi Khimii, 36, 22052209. Google Scholar
Kholodkovskaya, L.N., Dolgikh, V.A. and Popovkin, B.A. (1996) The crystal structure of the new pyroelectric phase Bi4Te2O9Br2 . Journal of Solid State Chemistry, 116, 406–408.CrossRefGoogle Scholar
Kikuta, T., Hamatake, D., Yamazaki, T and Nakatani, N. (2005) Crystal structure of telluric acid ammonium phosphate (TAAP) in the paraelectric phase. Journal of the Korean Physical Society, 46, 211216. Google Scholar
Kim, A.A., Zayakina, N.V. and Makhotko, V.F. (1990) Kuksite, Pb3Zn3TeO6(PO4)2, and cheremnykhite, Pb3Zn3TeO6(VO4)2, — new tellurates from the Kuranakh gold deposit (central Aldan, southern Yakutia [Sakha]). Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 119,5057 Google Scholar
Kim, J.H. and Halasyamani, P.S. (2008) A rare multi-coordinate tellurite, NH4ATe4O9 · 2H2 . (A= Rb or Cs): The occurence of TeO3, TeO4, and TeO5 polyhedra in the same material. Journal of Solid State Chemistry, 181,21082112 Google Scholar
Kim, J.H., Baek, J. and Halasyamani, P.S. (2007a) (NH4)2Te2WO8: a new polar oxide with second-harmonic generating, ferroelectric, and pyroelectric properties. Chemistry of Materials, 19,56375641 CrossRefGoogle Scholar
Kim, H., Cho, Y., Yun, H. and Do, J. (2007b) Hydrothermal synthesis of a new vanadium tellurate (VI) with a novel chain structure: (NH4)4﹛(VO2)2[Te2O8(OH)2]﹜ · 2(H2O). Zeitschrift für anorganische und allgemeine Chemie, 633,473477 CrossRefGoogle Scholar
Kim, M.K., Kim, S.-H., Chang, H.-Y., Halasyamani, P.S. and Ok, K.M. (2010) New noncentrosymmetric tellurite phosphate material: synthesis, characteriza¬tion, and calculations of Te2O(PO4)2 . Inorganic Chemistry, 49,70287034 CrossRefGoogle Scholar
Kim, Y.H., Lee, D.W. and Ok, K.M. (2014a) Noncentro symmetric YVSe2O8 and centro symmetric YVTe2O8: macroscopic centricities influenced by the size of lone pair cation linkers. Inorganic Chemistry, 53, 12501256. CrossRefGoogle Scholar
Kim, Y.H., Lee, D.W. and Ok, K.M. (2014b) Strong second harmonic generation (SHG) originating from combined second-order Jahn-Teller (SOJT) distortive cations in a new noncentro symmetric tellurite, InNb (TeO4)2 . Inorganic Chemistry, 53, 52405245. CrossRefGoogle Scholar
Klein, W., Curda, J., Peters, E.M. and Jansen, M. (2005a) Disilberoxotellurat(VI), Ag2TeO4 . Zeitschrift für anorganische und allgemeine Chemie, 631,723727 CrossRefGoogle Scholar
Klein, W., Curda, J., Peters, E.M. and Jansen, M. (2005b) Neue Silber(I)-oxotellurate(IV/VI). Zeitschrift für anorganische und allgemeine Chemie, 631,28932899 CrossRefGoogle Scholar
Klein, W., Curda, J., Peters, E.M. and Jansen, M. (2006) Ag2Te2O7, ein neues Silbertellurat mit Weberit-Struktur. Zeitschrift für anorganische und allgemeine Chemie, 632,15081513 CrossRefGoogle Scholar
Klein, W., Curda, J. and Jansen, M. (2007) Crystal structure and properties of Ag4CuTeO6 . Zeitschrift für anorganische und allgemeine Chemie, 633,231234 CrossRefGoogle Scholar
Kleppe, A.K., Welch, M.D., Crichton, W.A. and Jephcoat, A.P. (2012) Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, FeGe(OH)6, to 21 GPa. Mineralogical Magazine, 76, 949962. CrossRefGoogle Scholar
Knapp, M.C. (2006) Investigations into structure and properties of ordered perovskites, layered perovskites, and defect pyrochlores.Unpublished PhD Thesis, Ohio State University, USA, 161 pp..Google Scholar
Knop, O., Cameron, T.S. and Jochem, K. (1982) What is the true space group of weberite. Journal of Solid State Chemistry, 43,213221 CrossRefGoogle Scholar
Kocak, M., Platte, C. and Trömel, M. (1979a) Ueber verschiedene Formen von BaTeO3 . Zeitschrift für anorganische und allgemeine Chemie, 453,9397 CrossRefGoogle Scholar
Kocak, M., Platte, C. and Trömel, M. (1979b) Bariumhexaoxoditellurat (IV, VI): Sauerstoffkoordinationszahl fünf am vierwertigen Tellur. Acta Crystallographica, B35, 14391441. CrossRefGoogle Scholar
Köhl, P. (1973) Die Kristallstruktur von Perowskite. AII2NiIIMVIO6.II. Das Sr2NiWO6. Zeitschrift für anorganische und allgemeine Chemie, 401,121131 CrossRefGoogle Scholar
Köhl, P. and Reinen, D. (1974) Strukturelle und spektroskopische Untersuchungen am Ba2CuTeO6 . Zeitschrift für anorganische und allgemeine Chemie, 409,257272 CrossRefGoogle Scholar
Kohn, K., Inoue, K., Horie, O. and Akimoto, S.I. (1976) Crystal chemistry of MSeO3 and MTeO3 (M = Mg, Mn, Co, Ni, Cu and Zn). Journal of Solid State Chemistry, 18,2737 CrossRefGoogle Scholar
Kondratyuk, I.P., Muradyan, L.A., Pisarevskii, Y.V. and Simonov, V.I. (1987) Precision X-ray structure inves¬tigation of acoustooptical single crystals of α-TeO2 . Kristallografiya, 32, 354.Google Scholar
Kong, F., Jiang, H. and Mao, J.G. (2008) La4(Si5.2Ge2.8O18)(TeO3)4 and La2(Si6O13)(TeO3)2: Intergrowth of the lanthanum(III) tellurite layer with the XO4 . (X= Si/Ge) tetrahedral layer. Journal of Solid State Chemistry, 181,263268 CrossRefGoogle Scholar
Kong, F., Hu, C., Hu, T., Zhou, Y and Mao, J.G. (2009) Explorations of new phases in the Ga(III)/In(III)-Mo (VI)-Se(IV)/Te(IV)-O systems. Dalton Transactions, 2009,49624970 CrossRefGoogle Scholar
Kong, F., Xu, X. and Mao, J.-G. (2010) A series of new ternary and quaternary compounds in the Li(I)-Ga (III)-Te(IV)-O System. Inorganic Chemistry, 49,1157311580 CrossRefGoogle ScholarPubMed
Kortz, U., Al-Kassem, N.K., Savelieff, M.G., Al Kadi, N.A. and Sadakane, M. (2001) Synthesis and characterization of copper, zinc, manganese and cobalt-substituted, dimeric heteropolyanions, ((α-XW9O33)2M,(H2O)3)“∼)(«=12, X=AsIII,SbIII, M=Cu2+,Zn2+ . n = 10, X=SeIV,TeIV, M=Cu2+). Inorganic Chemistry, 40,47424749 Google Scholar
Kramer, V and Brandt, G. (1985) Structure of cadmium tellurate (IV), CdTeO3 . Acta Crystallographica, C41, 11521154. Google Scholar
Kramer, V and Brandt, G. (1986) Structure of mercury tellurate (IV). Acta Crystallographica, C42, 917918. Google Scholar
Kratochvil, B. (1986) The achieved results in the determination of the crystal structure of NaH5TeO6 . Sbornik Vysoke Skoly Chemicko — Technologicke v Praze, G: Mineralogie, 22, 5369 Google Scholar
Kratochvil, B. and Jensovsky, L. (1977) The crystal structure of sodium metatellurate. Acta Crystallographica, B33, 25962598. CrossRefGoogle Scholar
Kratochvil, B., Podlahova, J. and Jensovsky, L. (1978) Sodium potassium ditellurate(VI) hexahydrate. Acta Crystallographica, B34, 256258. CrossRefGoogle Scholar
Krishnan, K., Mudher, K.S. and Venugopal, V (2000) Structural and thermal studies on PuTe2O6 . Journal of Alloys and Compounds, 307,114118 CrossRefGoogle Scholar
Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223,109113 Google Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters. Zeitschrift für Kristallographie, 216,245247 Google Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centred tetrahedra in inorganic compounds. Chemical Reviews, 113,64596535 CrossRefGoogle Scholar
Ktari, L., Dammak, M., Mhiri, T. and Kolsi, A.W. (2002) Characterization and structure determination of dis¬ordered rubidium ammonium sulfate tellurate Rb1. 12(NH4)0 88SO4-(Te(OH)6). Physical Chemistry News, 8, 18. Google Scholar
Ktari, L., Dammak, M., Hadrich, A., Cousson, A., Nierlich, M., Romain, F. and Mhiri, T. (2004) Structural, vibrational and dielectric properties of the new mixed solution K0.84(NH4)1. 16SO4‘(Te(OH)6). Solid State Sciences, 6, 13931401. CrossRefGoogle Scholar
Ktari, L., Abdelhedi, M., Bouhlel, N., Dammak, M. and Cousson, A. (2009) Synthesis, calorimetric, structural and conductivity studies in a new thallium selenate tellurate adduct compound. Materials Research Bulletin, 44,17921796 CrossRefGoogle Scholar
Kunnmann, W., La Placa, S.J., Corliss, L.M., Hastings, J.M. and Banks, E. (1968) Magnetic structures of the ordered trirutiles Cr2WO6, Cr2TeO6 and Fe2TeO6 . Journal of Physics and Chemistry of Solids, 29, 13561364. CrossRefGoogle Scholar
Kyung, K.M., Vinna, J., Woo, L.D. and Min, O.K. (2010) Anionic templating in a new layered bismuth tellurium oxychloride, Bi3Te4O10Cl5. Dalton Transactions, 39, 60376042. Google Scholar
Lafuente, B., Yang, H. and Downs, R.T. (2015) Crystal structure of tetrawickmanite, Mn2+Sn4+(OH)6 . Acta Crystallographica, E71, 234237. Google Scholar
Laligant, Y (2001) X-ray and TEM studies of CdTeMoO6and CoTeMoO6: a new superstructure of fluorite type with cation and anion deficiencies (DCoTeMo)(D2O6). Journal of Solid State Chemistry, 160, 401408. CrossRefGoogle Scholar
Lam, A.E., Groat, L.A. and Ercit, T.S. (1998) The crystal structure of dugganite, Pb3Zn3Te6+As2O14 . The Canadian Mineralogist, 36,823830 Google Scholar
Lam, A.E., Groat, L.A., Grice, J.D. and Ercit, T.S. (1999) The crystal structure of choloalite. The Canadian Mineralogist, 37,721729 Google Scholar
Lammers, P. and Zemann, J. (1965) Beiträge zur Kenntnis der Alkalitellurate. I. Über ein neues Alkalitellurat und seinen Strukturtyp. Zeitschrift für anorganische und allgemeine Chemie, 334,225234 CrossRefGoogle Scholar
Larson, A.C. and Cromer, D.T. (1961) The crystal structure of CeCu2 . Acta Crystallographica, 14,7374 CrossRefGoogle Scholar
Laval, J.P. and Boukharrata, N.J. (2009) New vanadium (IV) and titanium(IV) oxyfluorotellurates(IV): V2Te2O7F2 and TiTeO3F2 . Acta Crystallographica, C65, il 16.Google Scholar
Laval, IP, Jennene Boukharrata, N. and Thomas, P. (2008) New oxyfluorotellurates(IV): MTeO3 . (M=Fe (III), Ga(III) and Cr(III)). Acta Crystallographica, C64, i12i14.Google Scholar
Lee, D.S. and Edmond, J.M. (1985) Tellurium species in seawater. Nature, 313,782785 CrossRefGoogle Scholar
Lee, D.W., Oh, S.-J., Halasyamani, P.S. and Ok, K.M. (2011) New quaternary tellurite and selenite: synthe¬ sis, structure, and characterization of centrosymmetric InVTe2O8 and noncentro symmetric InVSe2O8. Inorganic Chemistry, 50,44734480.CrossRefGoogle Scholar
Lee, D.W., Bak, D.-B., Kim, S.B., Kim, 1 and Ok, K.M. (2012) Effect of the framework flexibility on the centricities in centro symmetric In2Zn(SeO3)4 and noncentrosymmetric Ga2Zn(TeO3)4. Inorganic Chemistry, 51,78447850.CrossRefGoogle Scholar
Léger, J.M., Haines, J. and Atouf, A. (1996) The high pressure behaviour of the cotunnite and post-cotunnite phases of PbCl2 and SnCl2 . Journal of Physics and Chemistry of Solids, 57,716 CrossRefGoogle Scholar
Levason, W. and Webster, M. (1998) Pentasodium bis [dihydroxytetraoxotellurium (VI)] gold (III)hex-adecahydrate. Acta Crystallographica, C54, 17291731. Google Scholar
Levason, W., Spicer, M.D. and Webster, M. (1988) Co¬ordination chemistry of higher oxidation states. Part 26. Spectroscopic studies of tellurate complexes of the trivalent group 1b metals. X-ray structure of Na5(Cu (TeO4(OH)2)2).16(H2O). Dalton Transactions, 5, 13771381. CrossRefGoogle Scholar
Levason, W., Spicer, M.D. and Webster, M. (1991) Coordination chemistry of higher oxidation states. Part 37. Tellurato complexes of palladium(IV) and platinum(IV). Crystal structures of Na8K2H4(Pd2Te4O24H2)-20H2O and K6Na2(Pt (OH)2(HTeO6)2)-12H2O. Inorganic Chemistry, 30, 967971. CrossRefGoogle Scholar
Levason, W., Oldroyd, R.D. and Webster, M. (1994) Extended x-ray absorption fine structure studies of transition-metal periodate and tellurate complexes. Crystal structure of Rb2Na4(OsO2(H2TeO6)2).16 (H2O). Dalton Transactions, 20, 29832988. CrossRefGoogle Scholar
Levinson, A.A. (1974) Introduction to Exploration Geochemistry. Applied Publishing, Calgary, Canada, 611 pp.Google Scholar
Li, G., Xue, Y and Xiong, M. (2014) Tewite, IMA 2014-053. CNMNC Newsletter No. 22. Mineralogical Magazine, 78, 12411248. Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Structure, Bonding and Classification.Springer-Verlag, Berlin - Heidelberg, 347 pp.CrossRefGoogle Scholar
Limanski, E.M., Drewes, D., Droste, E., Bohner, R. and Krebs, B. (2003) Syntheses and X-ray characteriza¬tion of novel tellurium-substituted lacunary poly-oxotungstates containing VIV, CoII, NiII and ZnII as heteroatoms. Journal of Molecular Structure, 656,1725 CrossRefGoogle Scholar
Lin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. and Guo, G.-C. (2013) Synthesis, band and crystal structures, and optical properties of the ternary compound Mg2Te3O8 . Zeitschrift für anorganische und allgemeine Chemie, 639,3134 CrossRefGoogle Scholar
Linda, D., Dutreilh-Colas, M., Loukil, M., Mirgorodsky, A., Masson, O., Duclere, J.R., Thomas, E and Kabadou, A. (2010) Crystal structure and dynamical properties of a new tellurite: AgTlTeO3 . Materials Research Bulletin, 45,18831888 CrossRefGoogle Scholar
Lindqvist, O. (1969) The crystal structure of the tellurate Na2K4[Te2O8(OH)2](H2O)14 . Acta Chemica Scandinavica, 23,30623070 CrossRefGoogle Scholar
Lindqvist, O. (1970) The crystal structure of telluric acid, Te(OH)6 (mon). Acta Chemica Scandinavica, 24,31783188 CrossRefGoogle Scholar
Lindqvist, O. (1972a) The crystal structure of CuTeO3 . Acta Chemica Scandinavica, 26, 14231430. CrossRefGoogle Scholar
Lindqvist, O. (1972b) A redetermination of the crystal structure of KTeO3(OH). Acta Chemica Scandinavica, 26,41094120.Google Scholar
Lindqvist, O. and Moret, J. (1973) The crystal structure of a tellurium (IV, VI) oxyhydroxide, H2Te2O6 . Acta Crystallographica, B29, 956963. CrossRefGoogle Scholar
Lindqvist, O., Mark, W. and Moret, J. (1975) The crystal structure of Te4O9 . Acta Crystallographica, B31, 12551259. CrossRefGoogle Scholar
Ling, J., Ward, M. and Burns, P.C. (2011) Hydrothermal syntheses and structures of the uranyl tellurates AgUO2(HTeO5) and Pb2UO2(TeO6). Journal of Solid State Chemistry, 184,401404 CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samosan, A., Engelhardt, G. and Grimmer, A.-R. (1980) Structural studies of silicates by solid-state high resolution 29Si NMR. Journal of the American Chemical Society, 102,48894893 CrossRefGoogle Scholar
Litaiem, H., Dammak, M., Mhiri, T and Cousson, A. (2005) Structural, conductivity and dielectric studies in (NH4)2SeO4-(Te(OH)6). Journal of Alloys and Compounds, 396,3439 CrossRefGoogle Scholar
Liu, Y., Liu, S.X., Cao, R., Ji, H.M., Zhang, S. and Ren, Y. (2008) Hydrothermal assembly and luminescence property of lanthanide-containing Anderson polyox-ometalates. Journal of Solid State Chemistry, 181,22372242 CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2004) Revised Tl(I)-O bond valence parameters and the structures of thallous dichromate and thallous uranyl phosphate hydrate. Zeitschrift für Kristallographie, 219,259266 Google Scholar
Loeksmanto, W., Moret, J., Maurin, M. and Philippot, E. (1980) Etude cristallochimique comparée et conductivité électrique de deux tellurates mixtes: AgxNa2_xTe2 vTe3 /I014 (X = 0, 4) et K2TeIVTe3VIO12. Journal of Solid State Chemistry, 33,209217 CrossRefGoogle Scholar
Loopstra, B.O. and Goubitz, K. (1986) The structures of four caesium tellurates. Acta Crystallographica, C42, 520523. Google Scholar
Lopez, M.L., Veiga, M.L., Jerez, A. and Pico, C. (1991) Synthesis and crystal structure o. MTe2O6 (M=Ce,Th). Journal of the Less-Common Metals, 175,235241 CrossRefGoogle Scholar
Lopez, M.L., Jerez, A., Pico, C., Saez-Puche, R. and Veiga, M.L. (1993a) Synthesis, Crystal structure, and magnetic susceptibility of MLnLiTeO6, M=Ca, Sr, Ba. Journal of Solid State Chemistry, 105,1926 CrossRefGoogle Scholar
Lopez, M.L., Alvarez, I., Gaitan, M., Jerez, A., Pico, C. and Veiga, M.L. (1993b) Structural study and magnetic measurements of some perovskites MLnLiTeO6 . Solid State Ionics, 63,599602 CrossRefGoogle Scholar
Lorenzo-Luis, P.A., Martin-Zarza, P., Gili, P., Saez-Puche, R., Jimenez-Jimenez, J., Rodriguez-Castellon, E., Ruiz Perez, C., Gonzalez-Platas, J. and Solans, X. (1997) Synthesis and characterisation of the molyb-dotellurates. (M(H2O)6)3 ■(TeMo6O24): M=NiII and CoII . European Journal of Solid State Inorganic Chemistry, 34,12591271 Google Scholar
Ma, C., Tschauner, O., Beckett, J.R., Rossmann, G.R. and Liu, W.J. (2013) Kangite, (Sc,Ti,Al,Zr,Mg,Ca,D)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: synchrotron micro-Laue diffraction and electron backscatter diffraction. American Mineralogist, 98,870878 CrossRefGoogle Scholar
Ma, C., Beckett, J.R. and Rossman, G.R. (2014) Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo, Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist, 99,654666 CrossRefGoogle Scholar
Mahlmeister, D. and Irran, E. (2012) Synthesis and crystal structure of the new telluric acid adduct (RbCl)3 · Te (OH)6 . Zeitschrift für Naturforschung, B: Chemical Sciences, 67, 14. Google Scholar
Mandarino, J.A., Williams, S.J. and Mitchell, R.S. (1963) Denningite, a new tellurite mineral from Moctezuma, Sonora, Mexico. The Canadian Mineralogist, 7, 443443. Google Scholar
Marezio, M. and Remeika, J.P. (1967) Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2_xFex03 . Journal of Chemical Physics, 46, 18621865. CrossRefGoogle Scholar
Margison, S.M., Grice, J.D. and Groat, L.A. (1997) The crystal structure of leisingite, (Cu2+,Mg,Zn)2(Mg,Fe) Te6+O6 · 6H2O. The Canadian Mineralogist, 35,759763 Google Scholar
Marrot, J. and Savariault, J.M. (1996) Tricesium ditellur-ium tetravanadium chloride tetradecaoxide. Acta Crystallographica, C52, 21292132. Google Scholar
Marsh, R.E. (1988) The structure of Te(OH)6 · Na3P3O9 · K3P3O9. Acta Crystallographica, C44, 774774. Google Scholar
Martinez-Carrera, S., Sanz, J., Pico, C., Gaitan, M., Jerez, A. and Veiga, M.L. (1987) Mixed oxides of the system MVTeIVO2 (M=Nb,Ta,Sb); II. Crystal structure of Ta2Te2O9 . Materials Research Bulletin, 22,14051412 CrossRefGoogle Scholar
Martinez-Lope, M.J., Retuerto, M., Alonso, J.A., Sanchez-Benitez, J. and Fernandez-Diaz, M.T. (2011) High-pressure synthesis and neutron diffraction investigation of the crystallographic and magnetic structure of TeNiO3 perovskite. Dalton Transactions, 40,45994604 CrossRefGoogle ScholarPubMed
Masse, R., Guitel, J.C. and Trodjman, I. (1980) Preparation chimique et structure cristalline des tell-urites de sodium et d'argent: Na2TeO3, Ag2TeO3 . Materials Research Bulletin, 15,431436 CrossRefGoogle Scholar
Matzat, E. (1968) Die Kristallstruktur eines unbekannten zeolithartigen Telluritminerals, (Zn,Fe)2(TeO3)3NaxH2_x · y(H2O). Tschermaks mineralogische undpetro-.·j.ifhi-, In \liiu ilun:y 11.12. Ili.N II“CrossRefGoogle Scholar
Mayer, H. and Pupp, G. (1977) Synthese und Kristallstruktur von Te8O10(PO4)4 . Zeitschrift für Kristallographie, 145,321333 Google Scholar
Mayer, H. and Weil, M. (2003) Synthese und Kristallstruktur von Te3O3(PO4)2, einer Verbindung mit fünffach koordiniertem Tellur (IV). Zeitschrift für anorganische und allgemeine Chemie, 629,10681072 CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology, 120,223254 CrossRefGoogle Scholar
Meagher, E.P. and Lager, G.A. (1979) Polyhedral thermal expansion in the TiO2 polymorphs; refine¬ment of the crystal structures of rutile and brookite at high temperature. The Canadian Mineralogist, 17, 7785. Google Scholar
Meier, S.F. and Schleid, T (2002) Synthese und Kristallstruktur des Holmium(III)-chlorid- oxotellur-ats(IV) HoClTeO3 . Zeitschrift für anorganische und allgemeine Chemie, 628,526528 3.0.CO;2-0>CrossRefGoogle Scholar
Meier, S.F. and Schleid, T (2003a) HoClTe2O5: ein tellurdioxidreiches Holmium(III)-Chlorid-Oxotellurat (IV). Zeitschrift für anorganische und allgemeine Chemie, 629,15751580 CrossRefGoogle Scholar
Meier, S.F. and Schleid, T .(2003b) Synthesis and crystal structure of Gd2TeO6 . Journal of Solid State Chemistry, 171, 408411. CrossRefGoogle Scholar
Meier, S.F. and Schleid, T (2004) Oxotellurate(IV) der Lanthanide: I. Die isotype Reihe M2Te4O1. (M=La-Nd, Sm-Yb). Zeitschrift für Naturforschung, B: Chemical Sciences, 59,881888 CrossRefGoogle Scholar
Meier, S.F. and Schleid, T (2005) Oxotellurate(IV) der Lanthanide: II. Die isotype Reih. M2Te5O13 (M=Dy-Lu). Zeitschrift für Naturforschung, B: Chemical Sciences, 60,720726 CrossRefGoogle Scholar
Meier, S.F. and Schleid, T (2006a) Ho11ClTe16O48: Ein extrem chlorarmes Chlorid-Oxotellurat(IV) des drei-wertigen Holmiums. Zeitschrift für anorganische und allgemeine Chemie, 632,17591767 CrossRefGoogle Scholar
Meier, S.F. and Schleid, T .(2006b) Na2Te2O7: Ein Natrium-Oxoditellurat (VI) mit eckenverknüpften [TeO6]6∼-Oktaedern. Zeitschrift für anorganische und allgemeine Chemie, 632,21502150 CrossRefGoogle Scholar
Meier, S.F., Hoss, P. and Schleid, T (2009) Dy2Te3O9: The first representative of lanthanoid(III)-oxotellurates(IV) with compositio. M2Te3O9. Zeitschrift für anorga¬nische und allgemeine Chemie, 635,768775 CrossRefGoogle Scholar
Meisel, K. (1939) The crystal structure of thorium phosphides. Zeitschrift für anorganische und allge¬meine Chemie, 240,300312 CrossRefGoogle Scholar
Mellini, M. and Merlino, S. (1981) Versiliaite and apuanite: derivative structures related to schafarzikite. American Mineralogist, 64,12351242 Google Scholar
Menzer, G. (1931) The crystal structure of eulytine. Zeitschrift für Kristallographie, 78,136163 Google Scholar
Mercurio, D., Champarnaud-Mesjard, J.C., Gouby, I. and Frit, B. (1998) On the crystal structure of Bi2Te2O7 . European Journal of Solid State and Inorganic Chemistry, 35,4965 CrossRefGoogle Scholar
Mercurio, D., El Farissi, M., Frit, B. and Goursat, P. (1983) Étude structurale et densification d'un nouveau materiau piézoélectrique: Bi2TeO5 . Materials Chemistry and Physics, 9, 467476. CrossRefGoogle Scholar
Merlino, S. (1983) Okenite, Ca10Si18O46 · 18H2O, the first example of a chain and sheet silicate. American Mineralogist, 68,614622 Google Scholar
Meunier, G. and Galy, J. (1971) Sur une déformation inédité du réseau de type fluorine. Structure cristalline des phases MTe3O8 (M=Ti, Sn, Hf, Zr). Acta Crystallographica, B27, 602608. CrossRefGoogle Scholar
Meunier, G., Darriet, J. and Galy, J. (1972) L'oxyde double TeVO4. I. Synthese et polymorphisme, struc¬ture cristalline de α-TeVO4 . Journal of Solid State Chemistry, 5, 314320. CrossRefGoogle Scholar
Meunier, G., Darriet, J. and Galy, J. (1973) L'oxyde double TeVO4. II. Structure cristalline de TeVO4-β -Relations structurales. Journal of Solid State Chemistry, 6, 6773. CrossRefGoogle Scholar
Meunier, G., Frit, B. and Galy, J. (1976) Cr2Te4O11: une structure à anions complexes (Cr2O10)14 . Acta Crystallographica, B32, 175180. CrossRefGoogle Scholar
Mikhaylov, A.A., Mel'nik, E.A., Churakov, A.V., Novotortsev, V.M., Howard, J.A.K.., Sladkevich, S., Gun, J., Bharathi, S., Lev, O.and Prikhodchenko, P.V. (2011) Synthesis, crystal structure, and characterization of alkali metal hydroxoantimonates. Inorganica Chemica Acta, 378,2429 CrossRefGoogle Scholar
Miletich, R. (1991) Hydrothermalsynthese und Kristallstruktur von MnCu(Te2O5)2 — ein Vertreter des Denningit-Typs. Österreische Akademie der Wissenschaften, Mathematich-Naturwissenschaftliche Klasse, Sitzungsberichte, 128,3134 Google Scholar
Miletich, R. (1993) Copper-substituted manganese-denningites, Mn(Mn1_xCux)(Te205)2 (0x1): syn¬thesis and crystal chemistry. Mineralogy and Petrology, 48, 129145. CrossRefGoogle Scholar
Miletich, R. (1995a) Crystal chemistry of the microporous tellurite minerals zemannite and kinichilite, Mg0.5[Me2+Fe3+(TeO3)3] · 4.5H2O. (Me+ = Zn; Mn). European Journal of Mineralogy, 7, 509523. CrossRefGoogle Scholar
Miletich, R. (1995b) The synthetic microporous tellurites Na2[Me2(TeO3)3] · 3H2 . (Me = Zn,Co): Crystal structure, De- and rehydration, and ion exchange properties. Monatshefte für Chemie/Chemical Monthly, 126,417430 Google Scholar
Miletich, R. and Pertlik, F. (1998) Crystal structure of NaGaTe2O6: Aspects of TenOm polyhedral polymer¬ization in a layer tellurite. Journal of Alloys and Compounds, 268,107111 CrossRefGoogle Scholar
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for TeIV—O, TeVI—O and TeIV-Cl. Acta Crystallographica, B69, 145149. CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Chen, E.C.C.. and Raudsepp, M. (2009a) Revised values of the bond valence para¬meters for [6]Sb(V)-O and [3-11]Sb(III)-O. Zeitschrift für Kristallographie, 224,423431 CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009b) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21,10731080 CrossRefGoogle Scholar
Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A. and Poirier, G. (2009c) Joëlbruggerite, Pb3Zn3(Sb5+,Te6+) As2O13(OH,O), the Sb + analog of dugganite, from the Black Pine mine, Montana. American Mineralogist, 94, 10121017. CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Kolitsch, U., Housley, R.M. and Raudsepp, M. (2010) The crystal chemistry and crystal structure of kuksite, Pb3Zn3Te6+P2O14, and a note on the crystal structure of yafsoanite, (Ca,Pb)3Zn(TeO6)2 . American Mineralogist, 95, 933938 CrossRefGoogle Scholar
Mills, S.J., Kartashov, P.M., Ma, C., Rossmann, G.R., Novgorodova, ML, Kampf, A.R. and Raudsepp, M. (2011) Yttriaite-(Y): the natural occurrence of Y2O3from the Bol'shaya Pol'ya River, Subpolar Urals, Russia. American Mineralogist, 96,11661170 CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R.., Kameda, T. and Colombo, F. (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336. CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Rossman, G.R., Reynolds, R.E. and Marty, I (2014a) Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 78, 13251340. CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Thorne, B., Chen, Y.-S. and Steele, I.M. (2014b) Favreauite, a new selenite mineral from the El Dragón mine, Bolivia. European Journal of Mineralogy, 26,771781 CrossRefGoogle Scholar
Mills, S.J., Dunstan, M.A. and Christy, A.G. (2016) The first example of the [Te(OH)3]+ ion in a crystalline inorganic compound: the structure of Na11H[Te (OH)3]8[SO4]10(H2O)13. Dalton Transactions(in press).Google Scholar
Minimol, M.P. and Vidyasagar, K (2003) Hydrothermal synthesis and characterization of new one-dimensional tellurates, A2[Te3O8(OH)4]. Indian Journal of Chemistry, 42, 22442249. Google Scholar
Minimol, M.P. and Vidyasagar, K (2005) Syntheses and structural characterization of new mixed-valent tellur¬ium oxides, A4[Te56+Te34+]O23 (A = Rb and K). Inorganic Chemistry, 44,93699373 CrossRefGoogle Scholar
Mitchell, R.H. (2002) Perovskites. Modern and Ancient.Almaz Press, Thunder Bay, Ontario, Canada. 318 pp.Google Scholar
Moret, J., Philippot, E., Maurin, M. and Lindqvist, O. (1974) Structure cristalline de l'acide tetraoxotellurique H2TeO4 . Acta Crystallographica, B30, 18131818. CrossRefGoogle Scholar
Moret, J., Maurin, M. and Philippot, E. (1979) Étude du ternaire NH3-TeO3-H2O. Synthese et étude cristallo-chimique de (NH4)2Te3O8(OH)4 . Revue de Chimie Minerale, 16, 3947. Google Scholar
Morgenstern, Badarau I. and Michel, A. (1976) Sur l'éxistence d'un oxyhydroxyde double de fer(III) et d'étain(IV). Journal of Inorganic and Nuclear Chemistry, 38, 14001402. CrossRefGoogle Scholar
Mouron, P., Odier, P. and Choisnet, I (1985) Titanates de cuivre substitués à structure bixbyite: les composés Cu1_xTi1_xFe2x03 (0.1. x0.33). Journal of Solid State Chemistry, 60,8794 CrossRefGoogle Scholar
Müller-Buschbaum, H. and Wedel, B. (1996) Zur Kristallchemie der Barium-Oxometallat-Tellurite Ba2Te2M6O2 . (M=Niobund Tantal). Zeitschrift für Naturforschung, TeilB, 51, 14111414. Google Scholar
Müller-Buschbaum, H. and Wedel, B. (1997) Über die Kristallchemie der Tellurate Pb3Fe2Te2O12 und Pb2CoTeO6 . Zeitschrift für Naturforschung, Teil B, 52, 3539. Google Scholar
Müller-Buschbaum, H. and Wulff, L. (1997) Planare CuO4-Polygone und eine einseitig offene Te4+O3Koordination in SrCuTe2O6 . Zeitschrift für Naturforschung, B: Chemical Sciences, 52, 13411344. Google Scholar
Müller-Buschbaum, H. and Wulff, L. (1998) Zur Kristallchemie der Kupfer(II)-Zink- Tellurate Cu5Zn4Te3O18 und Cuj sZnj 5TeO6, mit einer Notiz ueberCu1. 5Co1. 5TeO6 . Zeitschrift für Naturforschung, TeilB, 53, 5357. Google Scholar
Nalbandyan, V.B., Avdeev, M. and Evstigneeva, M.A. (2013) Crystal structure of Li4ZnTeO6 and revision of Li3Cu2SbO6 . Journal of Solid State Chemistry, 199,6265 CrossRefGoogle Scholar
Nawash, J.M., Twamley, B. and Lynn, K.G. (2007) ZnTe6O13, a new ZnO-TeO2 phase. Acta Crystallographica, C63, i66—i68.Google Scholar
Nguyen, S.D., Kim, S.-H. and Halasyamani, P.S. (2011) Synthesis, characterization, and structure-property relationships in two new polar oxides: Zn2(MoO4) (SeO3) and Zn2(MoO4)(TeO3). Inorganic Chemistry, 50, 52155233. CrossRefGoogle Scholar
Nielsen, B.R., Hazell, R.G. and Rasmussen, S.E. (1971) The crystal structure of barium tellurite monohydrate, BaTeO3H2O. Acta Chemica Scandinavica, 25, 30373042. CrossRefGoogle Scholar
Nikiforov, G.B., Kusainova, A.M., Berdonosov, P.S., Dolgikh, V.A. and Lightfoot, P. (1999) The crystal structure of the new REE-Te oxychlorides: NdTe2O5Cl and GdTe2O5Cl. Journal of Solid State Chemistry, 146,473477 CrossRefGoogle Scholar
Noguera, O., Jouin, J., Masson, O., Jancar, B. and Thomas, P. (2012) Phase formation and crystal structure determination in the Y2O3-TeO2 system prepared in an oxygen atmosphere. Journal of the European Ceramic Society, 32, 42634269. CrossRefGoogle Scholar
O'Callaghan, M.P., Powell, A.S., Titman, II, Chen, G.Z. and Cussen, E.J. (2008) Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+xNd3Te2_xSbx012 . Chemistry of Materials, 20, 23602369. CrossRefGoogle Scholar
Oh, S.J., Lee, D.W. and Ok, K.M. (2012) PbMSeO6 (M = Mo and W): New quaternary mixed metal selenites with asymmetric cationic coordination environments. Dalton Transactions, 41,29953000 CrossRefGoogle ScholarPubMed
Ok, K.M. and Halasyamani, P.S. (2001) New tellurites: syntheses, structures, and characterization of K2Te4O9 · 3.2(H2O), KGaTe6O14, and KGaTe2O6 · 1.8(H2O). Chemistry of Materials, 13, 42784284. CrossRefGoogle Scholar
Ok, K.M. and Halasyamani, P.S. (2002a) Synthesis, structure and characterization of a new tellurate: NaBiTeO5 . Solid State Sciences, 4, 793797. CrossRefGoogle Scholar
Ok, K.M. and Halasyamani, P.S. (2002b) Anionic templating: synthesis, structure and characterization of novel three-dimensional mixed-metal oxychlorides Te4JW3Oi5-Cl (M=Nb5+ or Ta5+). Inorganic Chemistry, 41,38053807 CrossRefGoogle Scholar
Ok, K.M. and Halasyamani, P.S. (2005) Mixed-metal tellurites: synthesis, structure, and characterization of Na1.4Nb3Te4.9O18 and NaNb3Te4O16 . Inorganic Chemistry, 44,39193925 CrossRefGoogle ScholarPubMed
Ok, K.M. and Halasyamani, P.S. (2006) Synthesis, structure, and characterization of a new one-dimen-sional tellurite phosphate, Ba2TeO(PO4)2 . Journal of Solid State Chemistry, 179,13451350 CrossRefGoogle Scholar
Ok, K.M., Zhang, L. and Halasyamani, P.S. (2003) Synthesis, characterization and dielectric properties of new unidimensional quaternary tellurites: LaTeNbO6, La4Te6Nb2O23 and La4Te6Ta2O23 . Journal of Solid State Chemistry, 175,264271 CrossRefGoogle Scholar
Ok, K.M., Orzechowski, I and Halasyamani, P.S. (2004) Synthesis, structure, and characterization of two new layered mixed-metal phosphates, BaTeMO4(PO4 . (M=Nb5+ or Ta5+). Inorganic Chemistry, 43, 964968. CrossRefGoogle ScholarPubMed
O'Keeffe, M. and Andersson, S. (1977) Rod packings and crystal chemistry. Acta Crystallographica, A33, 914923. CrossRefGoogle Scholar
O'Keeffe, M. and Hyde, B.G. (1981) The role of nonbonded forces in crystals. Pp. 227-254 in: Structure and Bonding in Crystals I, (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York, USA, 327 pp.Google Scholar
O'Keeffe, M. and Hyde, B.G. (1985) An alternative approach to non-molecular crystal structures with emphasis on the arrangements of cations. Structure and Bonding, 61,77144 CrossRefGoogle Scholar
O'Keeffe, M. and Hyde, B.G. (1996) Crystal Structures. I. Patterns and Symmetry. Mineralogical Society of America, Washington DC, 453 pp.Google Scholar
Olmi, F. and Sabelli, C. (1994) Brizziite, NaSbO3, a new mineral from the Cetine mine (Tuscany, Italy): description and crystal structure. European Journal of Mineralogy, 6, 667672. CrossRefGoogle Scholar
Olsson, C., Johansson, L.G. and Kazikowski, S. (1988) Structure of silver telluryl nitrate, AgTeO2NO3 . Acta Crystallographica, C44, 427429. Google Scholar
Oufkir, A., Dutreilh, M., Thomas, P., Champarnaud-Mesjard, J.C., Marchet, P. and Frit, B. (2001) The crystal structure of PbTe5O11. Materials Research Bulletin, 36, 693703. CrossRefGoogle Scholar
Palenik, R.C., Abboud, K.A. and Palenik, G.J. (2005) Bond valence sums and structural studies of antimony complexes containing Sb bonded only to O ligands. Inorganica chimica acta, 358,10341040 CrossRefGoogle Scholar
Papike, II and Zoltai, T (1967) Ordering of tetrahedral aluminum in prehnite, Ca2(Al,Fe3+)[AlSi3O10](OH)2 . American Mineralogist, 52, 974984. Google Scholar
Park, K.T., Terakura, K. and Matsui, Y (1988) Theoretical evidence for a new ultra-high-pressure phase of SiO2 . Nature, 336,670672 CrossRefGoogle Scholar
Pavlyuk, YY, Dmytriv, G.S. and Bodak, O.I. (1993) Crystal structure of lithium calcium germanide (LiCa6Ge). Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 29, 727728. Google Scholar
Park, J.-H. and Woodward, P.M. (2000) Synthesis, structure and optical properties of two new perovs-kites: Ba2Bi2/3TeO6 and Ba3Bi2TeO9. International Journal of Inorganic Materials, 2, 153166.CrossRefGoogle Scholar
Park, J.-H., Woodward, P.M., Parise, J.B., Lubomirsky, I. and Stafsudd, O. (1999) Synthesis, structure and dielectric properties of Na2SnTeO6. Materials Research Society Symposia Proceedings, 547,139–144CrossRefGoogle Scholar
Parker, R.L. (1967) Composition of the Earth's crust. In: Data of Geochemistry,6th edition. U.S. Geological Survey Professional Paper 440-D, 19 pp.CrossRefGoogle Scholar
Pasero, M. and Perchiazzi, N. (1989) Chalcomenite from Baccu Locci, Sardinia, Italy: mineral data and structure refinement. Neues Jahrbuch für Mineralogie, Monatshefte, 1989,551556 Google Scholar
Pauling, L. (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51,10101026 CrossRefGoogle Scholar
Peacor, D.R. and Buerger, M.J. (1962) The determination and refinement of narsarsukite, Na2TiOSi4O10. American Mineralogist, 47,539556 Google Scholar
Pekov, I.V., Chukanov, NY, Zadov, A.E., Roberts, A.C., Jensen, M.C., Zubkova, N.V. and Nikischer, A.J. (2010) Eurekadumpite, (Cu,Zn)16(TeO3)2(AsO4)3Cl (OH)18 · 7H2O, a new hypergene mineral. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 139,2635.Google Scholar
[in Russian, English translation: (2011) Geology of Ore Deposits, 53, 575582.Google Scholar
Pekov, I.V., Siidra, O.I., Vlasov, E.A., Yapaskurt, V.O., Lukina, E.A., Polekhovsky, Y.S. and Apletalin, A.V. (2015) Ilirneyite, IMA 2015-046. CNMNC Newsletter No. 27. Mineralogical Magazine, 79.Google Scholar
Pekov, I.V., Vlasov, E.A., Zubkova, N.V., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Lykova, I.S., Apletalin, A.V., Zolotarev, A.A. and Pushcharovsky, D.Y. (2016) Raisaite, CuMg[Te6+O4(OH)2] · 6H2O, a new mineral from Chukotka, Russia. European Journal of Mineralogy, 28, 459466. CrossRefGoogle Scholar
Perez, G., Lasserre, F., Moret, J. and Maurin, M. (1976) Structure cristalline des hydroxytellurites de nickel et de cobalt. Journal of Solid State Chemistry, 17,143149 CrossRefGoogle Scholar
Pertlik, F. (1972a) Die Kristallstruktur von Fe2Te4O11. Tschermaks mineralogische und petrographische Mitteilungen, 18,3955 CrossRefGoogle Scholar
Pertlik, F. (1972b) Der Strukturtyp von Emmonsit, ﹛Fe2[TeO3]3 · H2O﹜ · xH2 . (x =0-1). Tschermaks mineralogische und petrographische Mitteilungen, 18, 157168. CrossRefGoogle Scholar
Pertlik, F. (1987) Dimorphism of hydrothermal synthe¬sized copper tellurite CuTeO3: The structure of a monoclinic representative. Journal of Solid State Chemistry, 71, 291295. CrossRefGoogle Scholar
Pertlik, F. and Gieren, A. (1977) Verfeinerung der Kristallstruktur von Mackayite, Fe(OH)[Te2O5]. Neues Jahrbuch für Mineralogie Monatschefe, 1977,145154 Google Scholar
Pertlik, F. and Zemann, J. (1988a) Die Kristallstruktur von Cu7(OH)6(TeO3)2(SO4)2 . Monatshefte für Chemie/ Chemical Monthly, 119,311317 CrossRefGoogle Scholar
Pertlik, F. and Zemann, J. (1988b) The crystal structure of nabokoite, Cu7TeO4(SO4)5 · KCl: The first example of a Te(IV)O4 pyramid with exactly tetragonal symmetry. Mineralogy and Petrology, 38,291298 CrossRefGoogle Scholar
Phatak, R., Krishnan, K., Kulkarni, N.K., Achary, S.N., Banerjee, A. and Sali, S.K. (2010) Crystal structure, magnetic and thermal properties of LaFeTeO6. Materials Research Bulletin, 45,19781983 CrossRefGoogle Scholar
Philippot, E., Astier, R., Loeksmanto, W., Maurin, M. and Moret, J. (1978) Étude cristallochimique d'un tellurate (IV) d'indium In2Te3O9 . Revue de Chimie Minerale, 15, 283291. Google Scholar
Philippot, E., Benmiloud, L., Maurin, M. and Moret, J. (1979a) Pentacoordination de l'atome de tellure (IV) par les atomes d'oxygenej. Étude cristallochimique d'un oxotellurate mixte: NH4[TeIVTeVIO5(OH)]. Acta Crystallographica, B35, 19861989. CrossRefGoogle Scholar
Philippot, E., Maurin, M. and Moret, J. (1979b) Étude cristallographique du tellurite de sodium a cinq molecules d'eau, Na2TeIVO3.5H2O. Acta Crystallographica, B35, 13371340. CrossRefGoogle Scholar
Pico, C., Castro, A., Veiga, M.L., Gutiérrez-Puebla, E., Monge, M.A. and Ruiz-Valero, C. (1986) Synthesis, crystal structure, and some physico-chemical proper¬ties of Te3SeO8. Journal of Solid State Chemistry, 63,172178 CrossRefGoogle Scholar
Pitzschke, D. and Jansen, M. (2007) Hydrothermal synthesis and crystal structure of AgVMO5 (M= Se, Te). Zeitschrift für anorganische und allgemeine Chemie, 633, 15631567.CrossRefGoogle Scholar
Pitzschke, D., Curda, J., Cakmak, G. and Jansen, M. (2008) Ag4I2SeO4 and Ag3ITeO4 - two new silver solid electrolytes. Zeitschrift für anorganische und allgemeine Chemie, 634,10711076 CrossRefGoogle Scholar
Platte, C. and Trömel, M. (1981) Nickelditellurat (IV): Sauerstoffkoordinationszahl Fünf am vierwertigen Tellur. Acta Crystallographica, B37, 12761278. CrossRefGoogle Scholar
Podlahova, J., Loub, J., Pechar, F. and Petricek, V (1984) Structure of the adduct of orthotelluric acid and potassium iodate, Te(OH)6 · KIO3 . Acta Crystallographica, C40, 19992001. Google Scholar
Pollitt, S. and Weil, M. (2014) Polymorphism of H2SeO3, NaHSeO4 and Na5H3(SeO4)4(H2O)2, and re-refinement of the crystal structure of Te2O4(OH)2. Zeitschrift für anorganische und allgemeine Chemie,doi: 10.1002/zaac.201400068.CrossRefGoogle Scholar
Popova, V.I., Popov, N.S., Rudashevskiy, S.F., Polyakov, V.O. and Bushmakin, A.F. (1987) Nabokoite Cu7TeO4(SO4)5 · KCl and atlasovite Cu6Fe3+Bi3+O4(SO4)5 · KCl. New minerals of volcanic exhalations. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 116,358367. in Russian with English abstract].Google Scholar
Porter, Y and Halasyamani, P.S. (2003) Syntheses, structures and characterization of new lead(II)-tellurium(IV)-oxide halides: Pb3Te2O6X2 and Pb3TeO4X2 . (X= Cl or Br).Inorganic Chemistry, 42,205209 CrossRefGoogle ScholarPubMed
Porter, Y., Bhuvanesh, N.S.P.. and Halasyamani, P.S. (2001) Synthesis and characterization of non-centro-symmetric TeSeO4 . Inorganic Chemistry, 40, 11721175. CrossRefGoogle Scholar
Pospelov, A.A., Nalbandyan, V.B., Serikova, E.I., Medvedev, B.S., Evstigneeva, M.A., Ni, E.V. and Lukov, Y Y (2011) Crystal structure and properties of a new mixed-valence compound LiMn2TeO6 and the survey of th. LiMM'X06 family(X= Sb or Te).Solid State Sciences, 13,19311937 CrossRefGoogle Scholar
Post, J.E., Bish, D.L. and Heaney, P.J. (2007) Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92,9197 CrossRefGoogle Scholar
Prior, T.J., Couper, YI and Battle, P.D. (2005) Structural chemistry of the cation-ordered perovskites Sr2CaMo!_xTexO6 (. x1). Journal of Solid State Chemistry, 178,153157 CrossRefGoogle Scholar
Qurashi, M.M. and Barnes, W.H. (1953) The structure of pucherite, BiVO4 . American Mineralogist, 38,489500 Google Scholar
Ra, H.-S., Ok, K.M. and Halasyamani, P.S. (2003) Combining second-order Jahn-Teller distorted cations to create highly efficient SHG materials: synthesis, characterisation and NLO properties of BaTeM2O. (M=Mo6+or W6+). Journal of the American Chemical Society, 125,77647765 CrossRefGoogle Scholar
Radtke, A.S., Dickson, F.W. and Slack, J.F. (1978) Occurrence and formation of avicennite, Tl2O3, as a secondary mineral at Carlin gold deposit, Nevada. Journal of Research of the United States Geological Survey, 6, 241246. Google Scholar
Raman, S. (1964) Crystal Structure of KTeO(OH)5H2O. Inorganic Chemistry, 3, 634638. CrossRefGoogle Scholar
Rastsvetaeva, R.K., Rekhlova, O.Y.u, Andrianov, V.I. and Malinovskii, Yu.A. (1991) Crystal structure of hsian-ghualite. Doklady Akademii Nauk SSSR, 316,624628 Google Scholar
Reimann, C. and de Caritat, P. (1998) b.Factsheets for the geochemist and environmental scientist. Springer-Verlag, Berlin, 398 pp.Google Scholar
Robl, C. and Frost, M. (1993a) Water-rich molybdotellu-rates: preparation and crystal structure of Li6(TeMo6O24) · 18H2O and Li6(TeMo6O24) · Te (OH)6 · 18H2O. Zeitschrift für anorganische und allgemeine Chemie, 619,11371146 CrossRefGoogle Scholar
Robl, C. and Frost, M. (1993b) On the proton-acceptor properties of Na4(NH4)2(TeMo6O24) · 16H2O. Zeitschrift für anorganische und allgemeine Chemie, 619,11321136 CrossRefGoogle Scholar
Robl, C. and Frost, M. (1993c) Cs6(TeMo6O24) · 2Te (OH)6 · 4H2O — eine Tellursäure- reiche Einschlussverbindung. Zeitschrift für anorganische und allgemeine Chemie, 619,16241628 CrossRefGoogle Scholar
Robl, C. and Frost, M. (1993d) Na6(TeMo6O24) · 22H2O - a layered heteropoly compound with the chain-like polycation (Na3(H2O)11)n3n+ . Zeitschrift für Naturforschung, B: Chemical Sciences, 48,404408 CrossRefGoogle Scholar
Robl, C. and Frost, M. (1993e) Alkalimolybdotellurate: Darstellung und Kristallstruktur von Rb6(TeMo6O24) · 10H2O und Rb6(TeMo6O24) · Te (OH)6 · 6H2O eine Tellursäure- reiche Einschlussverbindung. Zeitschrift für anorganische und allgemeine Chemie, 619,18341840 CrossRefGoogle Scholar
Rodewald, U.C., Hoffmann, R.D., Wu, Z. and Pöttgen, R. (2006) Structure refinement of AuSn2 . Zeitschrift für Naturforschung B: Chemical Sciences, 61,108110 CrossRefGoogle Scholar
Rossell, H.J., Leblanc, M., Ferey, G., Bevan, D.J.M.., Simpson, D.J. and Taylor, M.R. (1992) On the crystal structure of Bi2Te4O11. Australian Journal of Chemistry, 45, 14151425. CrossRefGoogle Scholar
Rozier, P., Vendier, L. and Galy, I (2002) KVTeO5 and a redetermination of the Na homologue. Acta Crystallographica, C58, i1 11—i1 13.Google Scholar
Rumsey, M.S., Welch, M.D., Mo, F., Kleppe, A.K., Spratt, I, Kampf, A.R. and Raanes, M.P. (2016) Millsite, IMA 2015-086. CNMNC Newsletter No. 29, February 2016, page 201. MineralogicalMagazine, 80, 199205. Google Scholar
Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3 . Zeitschrift für Kristallographie, 139,129135 CrossRefGoogle Scholar
Sabelli, C. (1987) Structure refinement of elpasolite from Cetine mine, Tuscany, Italy. Neues Jahrbuch für Mineralogie, Monatshefte, 1987,481487 Google Scholar
Schmidt, K.J., Schrobilgen, G.J. and Sawyer, J.F. (1986) Hexasodium hexatungstotellurate (VI) 22-hydrate. Acta Crystallographica, C42, 11151118. Google Scholar
Schuelke, U., Averbuch-Pouchot, M.T. and Durif, A. (1993) Chemical preparation and crystal structure of an adduct between potassium cyclooctaphosphate and telluric acid: Te(OH)6 · K8P8O24 · 2H2O. Zeitschrift für Kristallographie, 204,143152 Google Scholar
Schulz, H. and Bayer, G. (1971) Structure determination of Mg3TeO6 . Acta Crystallographica, B27, 815821. CrossRefGoogle Scholar
Sciau, P., Lapasset, I and Moret, I (1986) Structure de la phase quadratique de PbTeO3 . Acta Crystallographica, C42, 16881690. Google Scholar
Sedello, O. and Müller Buschbaum, H. (1996) Synthese und Kristallstruktur des Barium-Kupfer-Tellurit Tellurats BaCu(TeO3)(TeO4). Zeitschrift für Naturforschung, B: Chemical Sciences, 51,465468 CrossRefGoogle Scholar
Semenova, T.F., Rozhdestvenskaya, I.V., Filatov, S.K. and Vergasova, L.P. (1992) Crystal structure and physical properties of sophiite, Zn2(SeO3)Cl2, a new mineral. Mineralogical Magazine, 56,241245 CrossRefGoogle Scholar
Shan, Y.J., Yoshioka, Y., Wakeshima, M., Tezuka, K and Imoto, H. (2014) Synthesis, structure, and magentic properties of the novel sodium cobalt tellurate Na5Co15.5Te6O36 . Journal of Solid State Chemistry, 211,6368 CrossRefGoogle Scholar
Shen, Y.-L. and Mao, J.-G. (2005) Synthesis, crystal structures, and properties of six new lanthanide(III) transition metal tellurium(IV) oxyhalides with three types of structures. Inorganic Chemistry, 44, 53285335. CrossRefGoogle ScholarPubMed
Shen, Y.-L., Jiang, H.-L., Xu, J., Mao, J.-G. andCheah, K.W. (2005) Luminescent lanthanide selenites and tellurites decorated by MoO4 tetrahedra or MoO6octahedra: Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12 . Inorganic Chemistry, 44, 93149321. CrossRefGoogle ScholarPubMed
Shirkhanlou, M. and Weil, M. (2013) The Mg member of the isotypic series MTe6O13 . Acta Crystallographica, E69, i18.Google Scholar
Sidey, V (2009) Alternative presentation of the Brown-Wu bond-valence parameters for some s2cation/ O ∼ ion pairs. Acta Crystallographica, B65, 99101. CrossRefGoogle Scholar
Sivakumar, T., Ok, K.M. and Halasyamani, P.S. (2006) Synthesis, structure, and characterization of novel two-and three-dimensional vanadates: Ba2 5(VO2)3(SeO3)4. H2O and La(VO2)2(TeO6).3H2O. Inorganic Chemistry, 45, 36023605. CrossRefGoogle ScholarPubMed
Smith, J.V. (1953) Reexamination of the crystal structure of melilite. American Mineralogist, 38, 643661. Google Scholar
Sokolov, M.N., Peresypkina, E.V., Kalinina, I.V., Virovets, A.V., Korenev, V.S. and Fedin, V.P. (2010) New cluster-polyoxometalate hybrids derived from the incorporation of ﹛Mo3S4﹜ and ﹛Mo3CuS4﹜ units into ﹛EW15﹜ core. (E =As(III), Sb(III), Te(IV)). European Journal of Inorganic Chemistry, 2010,54465454 CrossRefGoogle Scholar
Song, S.Y., Lee, D.W. and Ok, K.M. (2014) Rich structural chemistry in scandium selenium/tellurium oxides: mixed-valent selenite-selenates, Sc2(SeO3)2(SeO4) and Sc2(TeO3)(SeO3)(SeO4), and ternary tellur-ite Sc2(TeO3)3 . Inorganic Chemistry, 53, 70407046. CrossRefGoogle ScholarPubMed
Spiridonov, E.M. and Tananeyva, O.I. (1982) Plumbotellurite, α-PbTeO3, a new mineral. Doklady Akademii Nauk SSSR, 262,12311235 Google Scholar
Staack, M. and Müller-Buschbaum, H. (1997) Dicobaltoarsenat — (CoAsO7)-Baugruppen im Cobaltoxid Tellurat Co6O2(TeO4(CoAsO5)2). Zeitschrift für Naturforschung, TeilB, 52,643646 CrossRefGoogle Scholar
Stöger, B. and Weil, M. (2012) The barium oxotellurate (IV) bromides Ba6Te10O25Br2 and Ba3Te3O8Br2 with channel structures. Zeitschrift für anorganische und allgemeine Chemie, 638,21502157 CrossRefGoogle Scholar
Stöger, B. and Weil, M. (2013) The calcium oxotellurate (IV) nitrates Ca5Te4O12(NO3)2(H2O)2 and Ca6Te5O15(NO3)2: non-classic order/disorder poly-typism and a rigid framework structure. Mineralogy and Petrology, 107,257263 CrossRefGoogle Scholar
Stöger, B., Weil, M., Zobetz, E. and Giester, G. (2009) Polymorphism of CaTeO3 and solid solutions CaxSr!_xTeO3 . Acta Crystallographica, B65, 167181. CrossRefGoogle Scholar
Stöger, B., Weil, M. and Zobetz, E. (2010) SrTeO6 and BaTeO6: Double perovskites with pronounced super¬structures. Zeitschrift für Kristallographie -Crystalline Materials, 225,125138 CrossRefGoogle Scholar
Stöger, B., Weil, M., Baran, E.J., Gonzalez Baro, A.C., Malo, S., Rueff, J.M., Petit, S., Lepetit, M.B., Raveau, B. and Barrier, N. (2011a) The dehydration of SrTeO3(H2O) — a topotactic reaction for preparation of the new metastable strontium oxotellurate(IV) phase ϵ-Sr(TeO3). Dalton Transactions, 40, 55385548. CrossRefGoogle Scholar
Stöger, B., Weil, M., Silich, K.A., Olenev, A.V., Berdonosov, P.S. and Dolgikh, V.A. (2011b) Synthesis and structural characterization of new phases in the cubic M3Te2O6X2 . (M=Sr, Ba; X=Cl, Br) structure family. Zeitschrift für anorganische und allgemeine Chemie, 637,13221329 CrossRefGoogle Scholar
Strunz, H. and Contag, B. (1960) Hexahydroxostannate Fe, Mn, Co, Mg, Ca (Sn(OH)6) und deren Kristallstruktur. Acta Crystallographica, 13, 601603 CrossRefGoogle Scholar
Sullens, T.A. and Albrecht Schmitt, T.E. (2005) Structure and properties of the thorium vanadyl tellurate Th (VO2)2(TeO6)(H2O)2 . Inorganic Chemistry, 44, 22822286. CrossRefGoogle ScholarPubMed
Swainson, I.P. and Hammond, R.P. (2003) Hydrogen bonding in ikaite, CaCO3 · 6H2O. Mineralogical Magazine, 67, 555562. CrossRefGoogle Scholar
Swihart, G.H., Sen Gupta, P.K., Schlemper, E.O., Back, M.E. and Gaines, R.V. (1993) The crystal structure of moctezumite [PbUO2](TeO3)2. American Mineralogist, 78,835839.Google Scholar
Tagg, S.L., Huffmann, J.C. and Zwanziger, J.W. (1994) Crystal structure and sodium environments in sodium tetratellurite, Na2Te4O9, and sodium tellurite, Na2TeO3, by X-ray crystallography and sodium-23 NMR. Chemistry of Materials, 6, 18841889. CrossRefGoogle Scholar
Tagg, S.L., Huffmann, J.C. and Zwanziger, J.W. (1997) Crystal structure of sodium ditellurite, Na4Te4O10 . Acta Chemica Scandinavica, 51,118121 CrossRefGoogle Scholar
Tait, K.T., DiCecco, V., Cooper, M.A., Ball, N.A. and Hawthorne, F.C. (2014) Backite, Pb2Al(TeO6)Cl, a new tellurate mineral from the Grand Central mine, Tombstone Hills, Cochise County, Arizona: descrip¬tion and crystal structure. The Canadian Mineralogist, 52, 935942 CrossRefGoogle Scholar
Takagi, R. and Johnsson, M. (2005) Ca2CuTe4O10Cl2, a new synthetic tellurium(IV) oxochloride. Acta Crystallographica, C61, i106i108.Google Scholar
Takagi, R. and Johnsson, M. (2006) Sr2Cu2TeO6Br2: honeycomb layers of copper(II) ions. Acta Crystallographica, C62, i38i40.Google Scholar
Takagi, R., Johnsson, M., Gnezdilov, V., Kremer, R.K., Brenig, W and Lemmens, P. (2006a) Investigation of the oxohalide Cu4Te5O12Cl4 with weakly coupled Cu (II) tetrahedra. Physical Review, Serie 3. B -Condensed Matter, 74, 014413–1. 14413-8.CrossRefGoogle Scholar
Takagi, R., Duc, F. and Johnsson, M. (2006b) Molybdenum (VI) tricopper(II) tellurium(IV) heptaoxide dichloride hemihydrate. Acta Crystallographica, C62, i16i18.Google Scholar
Takagi, R. Johnsson, M., Kremer, R.K. and Lemmens, P. (2006c) Crystal structure and magnetic properties of the coupled spin dimer compound SrCu2(TeO3)2Cl2. Journal of Solid State Chemistry, 179,37633767 CrossRefGoogle Scholar
Takagi, R., Torino Hjelmqvist, D. and Johnsson, M. (2007) The solid solution Co3 6Mg! 4Cl2(TeO3)4 . Acta Crystallographica, E63, i146i147.Google Scholar
Takagi, R.F., Johnsson, M. and Lidin, S. (2008) Single-crystal x-ray study of Ba2Cu2Te4O11Br2 and its incommensurately modulated superstructure com¬panion. Chemistry - A European Journal, 14,34343441 CrossRefGoogle Scholar
Takagi, R.F., Hjelmqvist, D.T., Johnsson, M. and Lidin, S. (2009) Helical chains of [MO5Cl] octahedra - Three compounds in the new famil. AEM2T3O8Cl2 (AE =Ca, SrandM= Co, Ni). Solid State Sciences, 11,1317 CrossRefGoogle Scholar
Tang, Y., He, Z., Guo, W., Zhang, S. and Yang, M. (2014) Syntheses and magnetic properties of new tellurite-sulfate compounds M2(TeO3)(SO4) · H2 . (M=Co, Mn) with a layer structure showing a distorted honeycomb spin-lattice. Inorganic Chemistry, 53, 58625868. Google Scholar
Tarasov, I.V., Dolgikh, V.A., Aksel'rud, L.G., Berdonosov, P.S. and Ponovkin, B.A. (1996) NdTe2O5Br is a new representative of the Bi3O4Br type structures. Zhurnal Neorganicheskoi Khimii, 41,12431247 Google Scholar
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific, Oxford, UK, 312 pp.Google Scholar
Thomas, P., Jeansannetas, B., Champarnaud-Mesjard, J.C. and Frit, B. (1996) Crystal structure of a new mixed-valence bismuth oxotellurate Bi2TeIVTeVIO8 . European Journal of Solid State Inorganic Chemistry, 33, 637646. Google Scholar
Thornber, M.R., Bevan, D.J.M.. and Graham, J. (1968) Mixed oxides of the type MO2(fluorite) — M2O3.III. Crystal structures of the intermediate phases Zr5Sc2O13 and Zr3Sc4O12 . Acta Crystallographica, B24, 11831190. CrossRefGoogle Scholar
Thümmel, H.J. and Hoppe, R. (1974) Über die Tellurite der Alkalimetalle vom Ty. M2TeO3. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 29,2831 Google Scholar
Tindemans-van Eijndhoven, J.C.M.. and Verschoor, G.C. (1974) Redetermination of the crystal structure of Cs2AuAuCl6. Materials Research Bulletin, 9,1667-1670.CrossRefGoogle Scholar
Trömel, V.M. and Scheller, T (1976) Die kristallstruktur von Co6Te5O16. Zeitschrift für anorganische und allgemeine Chemie, 427,229-229.CrossRefGoogle Scholar
Trömel, M., Maetz, J. and Müllner, M. (1977) Berylliumtellurat Be4TeO7 . Acta Crystallographica, B33, 39593961.CrossRefGoogle Scholar
Trömel, M., Hötzler, F.W., Burckhardt, H.G., Platte, C. and Muench, E. (1987) Lanthanoidtellurate Ln2TeO6 . Zeitschrift für anorganische und allgemeine Chemie, 551, 95100. CrossRefGoogle Scholar
Troyanov, S.I., Tikhomirov, G.A., Znamenkov, K.O. and Morozov, I.V. (2000) Crystal structure of beryllium complexes (NO)2(Be(NO3)4) and Be4O(NO3)6 . Zhurnal Neorganicheskoi Khimii, 45, 19411948. Google Scholar
Trudu, A.G. and Knittel, U. (1998) Crystallography, mineral chemistry and chemical nomenclature of goldfieldite, the tellurian member of the tetrahedrite solid-solution series. The Canadian Mineralogist, 36, 11151137. Google Scholar
Ulku, D. (1967) Untersuchungen zur Kristallstruktur und magnetischen Struktur des Ferberits, FeWO4 . Zeitschrift für Kristallographie, 124,192219 CrossRefGoogle Scholar
Untenecker, H. and Hoppe, R. (1986a) Die Koordinationszahl 5 bei Telluraten: Cs2K2[TeO5]. Journal of the Less-Common Metals, 124,2940 CrossRefGoogle Scholar
Untenecker, H. and Hoppe, R. (1986b) Neues über Oxotellurate: K3Li3(TeO6). Journal of the Less-Common Metals, 124,251262 CrossRefGoogle Scholar
Untenecker, H. and Hoppe, R. (1986c) Neue Oxotellurate (VI): K4Na2(TeO6). Journal of the Less-Common Metals, 125,223231 CrossRefGoogle Scholar
Untenecker, H. and Hoppe, R. (1987a) Ein neues oxotellurat, Na4TeO5, und eine revision der struktur von Li4TeO5 . Journal of the Less Common Metals, 132,7992 CrossRefGoogle Scholar
Untenecker, H. and Hoppe, R. (1987b) Neue Oxotellurate (VI): KNa5(TeO6). Journal of the Less-Common Metals, 132,93105 CrossRefGoogle Scholar
Vallar, S. and Goreaud, M. (1997) Crystal structure of a monoclinic form of TeMo5O16, a two-dimensional conductor mixed-valence oxide. Journal of Solid State Chemistry, 129,303307 CrossRefGoogle Scholar
van Bever, A.K. (1935) The crystal structure of calcium chloride, CaCl2 . Zeitschrift fuer Kristallographie, 90,374376 Google Scholar
van der Lee, A. and Astier, R. (2007) Structural evolution in iron tellurates. Journal of Solid State Chemistry, 180,12431249 CrossRefGoogle Scholar
Veblen, D.R. and Burnham, C.W. (1978) New biopyr-iboles from Chester, Vermont. II. The crystal chem¬istry of jimthompsonite, clinojimthompsonite, and chesterite and the amphibole-mica reactions. American Mineralogist, 63,10531073 Google Scholar
Viciu, L., Huang, Q., Morosan, E., Zandbergen, H.W., Greenbaum, N.I., McQueen, T and Cava, R.J. (2007) Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6 . Journal of Solid State Chemistry, 180,10601067 CrossRefGoogle Scholar
von Dreele, R.B., Eyring, L., Bowman, A.L. and Yarnell, J.L. (1975) Refinement of the crystal structure of Pr7O12 by powder neutron diffraction. Acta Crystallographica, B31, 971974.CrossRefGoogle Scholar
Walitzi, E.M. (1964) Die Kristallstruktur von Denningit, (Mn,Ca,Zn)Te2O5 . Naturwissenschaften, 51, 334335. CrossRefGoogle Scholar
Walitzi, E.M. (1965) Die Kristallstruktur von Denningit, (Mn, Ca, Zn)Te2O5. Ein Beispiel für die Koordination um vierwertiges Tellur. Tschermaks mineralogische undpetrographische Mitteilungen, 10, 241255 CrossRefGoogle Scholar
Wang, Z. and Becker, H. (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature, 499,328331 CrossRefGoogle ScholarPubMed
Weber, F.A. and Schleid, T. (2000) Pr2Te2O7: A praseodymium (III) oxide oxotellurate (IV) according to Pr2O(TeO3)2 with pyrochlore-type crystal structure. Zeitschrift für anorganische und allgemeine Chemie, 626,12851287 3.0.CO;2-B>CrossRefGoogle Scholar
Wedel, B. and Müller-Buschbaum, H. (1996) Ueber ein Blei-Kupfer-Tellurat PbCu3TeO7 mit Cu2+ in defor- miert tetragonal pyramidaler und tetraedrischer Sauerstoffkoordination. Zeitschrift fuer Naturforschung, TeilB, 51, 15871590. CrossRefGoogle Scholar
Wedel, B. and Sugiyama, K. (1999) A new tellurium compound with the garnet structure: Na3Te2(Fe,Al)3O12 . Zeitschrift für Kristallographie, 214, 151152. Google Scholar
Wedel, B., Sugiyama, K. and Müller-Buschbaum, H. (1998) Verknüpfung von (TeO6)6 und (TeO6)3(NiO6)3sechsringen durch TeNiO9-Oktaederdoppel in Pb3Ni4 5Te2 5O15. Zeitschrift für Naturforschung B: Chemical Sciences, 53, 527531. CrossRefGoogle Scholar
Weil, M. (2003a) Preparation, thermal behaviour and crystal structure of the basic mercury (II) tetraoxo-tellurate (VI), Hg2TeO5, and redetermination of the crystal structure of mercury (II) orthotellurate (VI), Hg3TeO6. Zeitschrift für anorganische und allgemeine Chemie, 629,653657 CrossRefGoogle Scholar
Weil, M. (2003b) Dimorphism in mercury(II) tellurite(IV) tellurate(VI): preparation and crystal structures of alpha- and beta-(Hg2Te2O7). Zeitschrift für Kristallographie, 218, 691698. Google Scholar
Weil, M. (2004a) Preparation and crystal structures of the hydrous mercury tellurates HgII(H4TeVIO6) and HgI2(H4TeVIO6)(H6TeVIO6) · 2(H2O). Zeitschrift für anorganische und allgemeine Chemie, 630, 10481053. CrossRefGoogle Scholar
Weil, M. (2004b) New phases in the systems Ca-Te-O and Cd-Te-O: the calcium tellurite(IV) Ca4Te5O14 and the cadmium compounds Cd2Te3O9 and Cd2Te2O7 with mixed-valent oxotellurium(IV/VI) anions. Solid State Sciences, 6, 2937. CrossRefGoogle Scholar
Weil, M. (2005a) Ag2Hg2(TeO4)3 . Acta Crystallographica, C63, i103-i105.Google Scholar
Weil, M. (2005b) Redetermination of MgTe2O5 . Acta Crystallographica, E61,, i237-i239.Google Scholar
Weil, M. (2006a) Mn3TeO6. Acta Crystallographica, E62, i244i245.Google Scholar
Weil, M. (2006b) Zn3TeO6 . Acta Crystallographica, E62, 12461247.Google Scholar
Weil, M. (2007a) Redetermination of Ag2[TeO2(OH)4]: a revised hydrogen-bonding scheme.. Acta Crystallographica, E63,, i77-i79.Google Scholar
Weil, M. (2007b) New silver tellurates - the crystal structures of a third modification of Ag2Te2O6 and of Ag4TeO5. Zeitschrift für anorganische und allgemeine. Chemie, 633,12171222.CrossRefGoogle Scholar
Weil, M. (2014) Two modifications of (TeO)(HAsO4) and its dehydration product (Te3O3)(AsO4)2 — three more examples of tellurium (IV) with a fivefold oxygen coordination. Zeitschrift für anorganische und allge¬meine Chemie, 640,128135.CrossRefGoogle Scholar
Weil, M. and Stöger, B. (2007a) Redetermination of SrTe3O8 from a hydrothermally grown single crystal. Acta Crystallographica, E63,, i116—i118.Google Scholar
Weil, M. and Stöger, B. (2007b) Digallium(III) tris (tellurate(IV)) trihydrate. Acta Crystallographica, E63, i202-i202.Google Scholar
Weil, M. and Stöger, B. (2008a) NaFe(TeO3)2 . Acta Crystallographica, E64,, i3—i3.Google Scholar
Weil, M. and Stöger, B. (2008b) A non-twinned polymorph of CaTe2O5 from a hydrothermally grown crystal. Acta Crystallographica, C64, i79—i81.Google Scholar
Weil, M. and Stöger, B. (2010) Pb3Te2O6Br2 . Acta Crystallographica, E66,, i7—i7.Google Scholar
Weller, M.T., Pack, M.J., Binsted, N. and Dann, S.E. (1999) The structure of cesium tellurate(VI) by combined EXAFS and powder X-ray Diffraction. Journal of Alloys and Compounds, 282, 7678 CrossRefGoogle Scholar
Wells, A.F. (1947) Structural Inorganic Chemistry. 1st edition. Oxford University Press, UK, 344 pp.Google Scholar
Wildner, M. (1993) Zemannite-type selenites —. crystal structures of K2[Co2(SeO3)3]·2H2O and K2[Ni2(SeO3)3] · 2H2O. Mineralogy and Petrology, 48,215225.CrossRefGoogle Scholar
Wilk, P., Keller, H.L. and Wimbert, L. (1998) BiTeO3 I - das erste Mitglied eines neuen Strukturtyps. Zeitschrift für Kristallographie, 15, 6464.Google Scholar
Williams, S.A. (1974) Cesbronite, a new copper tellurite from Moctezuma, Sonora. Mineralogical Magazine, 39,744746..CrossRefGoogle Scholar
Williams, S.A. (1975)Xocometatlite, Cu3TeO4(OH)4, and tlalocite, Cu10Zn6(TeO3)(TeO4)2Cl(OH)25 · 27H2O, two new minerals from Moctezuma, Sonora, Mexico. Mineralogical Magazine, 40, 221226.CrossRefGoogle Scholar
Williams, S.A. (1979) Girdite, oboyerite, fairbankite and winstanleyite, four new tellurium minerals from Tombstone, AZ. Mineralogical Magazine, 43, 453457 CrossRefGoogle Scholar
Wisser, T and Hoppe, R. (1989) Neues über Oxotellurate (VI) der Alkalimetalle Zur Existenz und Konstitution von Li6TeO6. Zeitschrift für anorganische und allge-meine Chemie, 573,133142 CrossRefGoogle Scholar
Wisser, T. and Hoppe, R. (1990a) Ein Oxotellurat (VI) neuen Typs: Rb6[TeO5][TeO4]. Zeitschrift für anorga¬nische und allgemeine Chemie, 584,105113 CrossRefGoogle Scholar
Wisser, T. and Hoppe, R. (1990b) Das erste quinquinäre Oxotellurat (VI): K3Na2LiTeO6 . Zeitschrift für anor¬ganische und allgemeine Chemie, 586,125135 CrossRefGoogle Scholar
Woodward, J.D. and Albrecht-Schmitt, T.E. (2005) Molten salt flux synthesis and structure of the new layered uranyl tellurite, K4((UO2)5(TeO3)2O5). Journal of Solid State Chemistry, 178,29222926 CrossRefGoogle Scholar
Woodward, J.D., Almond, P.M. and Albrecht Schmitt, T.E. (2004) Synthesis and crystal structures of the layered uranyl tellurites A2((UO2)3(TeO3)2O2) (A = K, Rb, Cs). Journal of Solid State Chemistry, 177, 9713976.CrossRefGoogle Scholar
Woodward, P.M., Sleight, A.W., Du, L.-S. and Grey, C.P. (1999) Structural studies and order-disorder phenom¬enon in a series of new quaternary tellurates of the type A 2+M4+Te6+O6 an. A1+2M4+Te6+O6. Journal of Solid State Chemistry, 147,99116 CrossRefGoogle Scholar
Wulff, L. and Müller-Buschbaum, H. (1998) Isolierte trigonale SrO6 - Prismen verknüpfen Kagome-Netze im Strontium-Manganat(IV)-Tellurat(VI): SrMnTeO6 . Zeitschrift für Naturforschung, B53, 283286. CrossRefGoogle Scholar
Wulff, L., Wedel, B. and Müller-Buschbaum, H. (1998) Zur Kristallchemie von Telluraten mit Mn2+ im kationischen und anionischen Teil der Kristallstruktur: (Mn2 4CU0 6)TeOg, Ba2MnTeO6 und Pb(Mn0.5Te0.5)O3 . Zeitschrift für Naturforschung, B53, 4952. CrossRefGoogle Scholar
Xiao, D., Wang, S., Wang, E., Hou, Y., Li, Y., Hu, C. andXu, L. (2003) Hydrothermal synthesis and crystal structure of a three-dimensional vanadium tellurite V4Te4O18 . Journal of Solid State Chemistry, 176,159164 CrossRefGoogle Scholar
Xu, J., Assoud, A., Soheilnia, N., Derakhshan, S., Cuthbert, H.L., Greedan, J.E., Myungwhan, W and Kleinke, H. (2005) Synthesis, structure, and magnetic properties of the layered copper(II) oxide Na2Cu2TeO6 . Inorganic Chemistry, 44, 50425046. CrossRefGoogle ScholarPubMed
Yablokova, S.V., Dubakina, L.S. Dmitrik, A.L. and Sokolova, G.V. (1975) Kuranakhite — a new supergene tellurium mineral. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 104,310313 Google Scholar
Yamanaka, T., Uchida, A. and Nakamoto, Y (2013) Structural transition of post-spinel phases CaMn2O4, CaFe2O4 and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93,18741881 CrossRefGoogle Scholar
(A= Sr2+, Ba2+, or Pb2+). Inorganic Chemistry, 50, 86638670. Google Scholar
Yeon, J.H., Kim, S.-H. and Halasyamani, P.S. (2011b) Crystal structure of a new quinternary oxide: NaTl3Cu4Te2O12 . Journal of Chemical Crystallography, 41,328331 CrossRefGoogle Scholar
Yeon, J., Kim, S.-H., Green, M.A., Bhatti, K.P., Leighton, C. and Halasyamani, P.S. (2012a) Syntheses, crystal structures, and characterization of two new Tl+-Cu2+-Te6+ oxides: Tl4CuTeO6 and Tl6CuTe2O10 . Journal of Solid State Chemistry, 196,607613 CrossRefGoogle Scholar
Yeon, J., Kim, S.-H., Nguyen, S.D., Lee, H. and Halasyamani, P.S. (2012b) Two new noncentrosym-metric (NCS) polar oxides: syntheses, characterization, and structure-property relationships in BaMTe2O7 (M=Mg2+ or Zn2+). Inorganic Chemistry, 51,26622668 CrossRefGoogle Scholar
Yin, Y and Keszler, D.A. (1992) Crystal chemistry of colquiriite-type fluorides. Chemistry of Materials, 4, 645648. CrossRefGoogle Scholar
Yu, Y., Ok, K.M. and Halasyamani, P.S. (2004) Synthesis and characterization of two novel mixed metal tellurates: KGaTeO5 · H2O and K3GaTe2O8(OH)2 · H2O. Dalton Transactions, 2004,392396 CrossRefGoogle Scholar
Yun, G., Hwang, Y., Yun, H., Do, I And Jacobson, A.J. (2010) Avanadium tellurate, (NH4)2[VO2]2[TeO4(OH)2], containing two edge-shared square-pyramidal VO5groups. Inorganic Chemistry, 49,229233 CrossRefGoogle Scholar
Zachariasen, W, (1928) On the crystal structure ofbixbyite and of synthetic Mn2O3 . Zeitschrift für Kristallographie, 67,455464.Google Scholar
Zalkin, A. and Templeton, D.H. (1964) X-ray diffraction refinement of the calcium tungstate structure. Journal of Chemical Physics, 40,501504 CrossRefGoogle Scholar
Zavodnik, V.E., Ivanov, S.A. and Stash, A.I. (2007) The alpha-phase of SrTeO3 at 295 K. Acta Crystallographica, E63, i75i76. Google Scholar
Zavodnik, V.E., Ivanov, S.A. and Stash, A.I. (2008) alpha-Lead tellurite from single-crystal data. Acta Crystallographica, E64, i16— i16.Google Scholar
Zhang, D. and Johnsson, M. (2008) Zn2(TeO3)Br2 . Acta Crystallographica, E64, i26—i26.Google Scholar
Zhang, D. and Johnsson, M. (2009) Nickel vanadium tellurium oxide, NiV2Te2O10 . Acta Crystallographica, C65, 19 ilO.Google Scholar
Zhang, D., Johnsson, M., Berger, H., Kremer, R.K., Wulferding, D. and Lemmens, P. (2009a) Separation of the oxide and halide part in the oxohalide Fe3Te3O10Cl due to high Lewis acidity of the cations. Inorganic Chemistry, 48, 65996603. CrossRefGoogle ScholarPubMed
Zhang, D., Johnsson, M. and Kremer, R.K. (2010a) Two new layered oxohalides in the system Cu-Yb-Te-O-Cl. Solid State Sciences, 12,536540 CrossRefGoogle Scholar
Zhang, D., Kremer, R.K., Lemmens, P., Choi, K.-Y., Liu, J., Wnagbo, M., Berger, H., Skourski, Yu. and Johnsson, M. (2011a) Crystal structure and magnetic properties of two new antiferromagnetic spin dimer compounds: FeTe3O7X (X=Cl, Br). Inorganic Chemistry, 50, 1287712885. CrossRefGoogle Scholar
Zhang, II, Zhang, Z.H., Zhang, W.G., Zheng, Q.X., Sun, Y.X., Zhang, C.Q. and Tao, X.T. (2011b) Polymorphism of BaTeMo2O9: a new polar poly-morph and the phase transformation. Chemistry of Materials, 23,37523761 CrossRefGoogle Scholar
Zhang, II, Zhang, Z.H., Sun, Y.X., Zhang, C.Q., Zhang, S.J., Liu, Y and Tao, X.T. (2012a) MgTeMoO6: A neutral layered material showing strong second-harmonic generation. Journal of Materials Chemistry, 19, 99219927. CrossRefGoogle Scholar
Zhang, S., Jiang, H., Sun, C.F. and Mao, J.G. (2009b) Syntheses, crystal structures, and properties of five new transition metal molybdenum(VI) selenites and tellurites. Inorganic Chemistry, 48,1180911820 CrossRefGoogle ScholarPubMed
Zhang, S., Hu, C., Sun, C.F. and Mao, J.G. (2010b) Syntheses and crystal structures of a series of alkaline earth vanadium selenites and tellurites. Inorganic Chemistry, 49, 1162711636. CrossRefGoogle ScholarPubMed
Zhang, S., Hu, C. and Mao, J. (2011c) New mixed metal selenites and tellurites containing Pd + ions in a square planar geometry. Dalton Transactions, 41,20112017 CrossRefGoogle Scholar
Zhang, S., Hu, C., Li, P., Jiang, H. and Mao, I (2012b) Syntheses, crystal structures and properties of a new lead(II) or bismuth(III) selenites and tellurite. Dalton Transactions, 41, 95329542. CrossRefGoogle ScholarPubMed
Zhou, Y., Hu, C., Hu, T., Kong, F. and Mao, J.G. (2009) Explorations of new second-order NLO materials in the Ag(I)-Mo(VI)/W(VI)-Te(IV)-O systems. Dalton Transactions, 2009,57475754 CrossRefGoogle Scholar
Zikmund, Z. (1967) On the crystal structure of ortho–rhombic K2TeO3(OH)2(H2O)2.5.. Czechoslovak. Journal of Physics, 17, 196198 CrossRefGoogle Scholar
Zilber, R., Durif, A. and Averbuch-Pouchot, M.T. (1980a) Structure of potassium sulfate tellurate: Te(OH)6K2SO4. Acta Crystallographica, B36, 27432745. CrossRefGoogle Scholar
Zilber, R., Tordjman, I. and Guitel, J.C. (1980b) Structure of sodium sulfate tellurate. Acta Crystallographica, B36, 27412743..CrossRefGoogle Scholar
Zilber, R., Durif, A. and Averbuch-Pouchot, M.T. (1981) Structure of ammonium sulfate tellurate Te(OH)6 · (NH4)2SO4 . Acta Crystallographica, B37, 650652..CrossRefGoogle Scholar
Zilber, R., Durif, A. and Averbuch-Pouchot, M.T. (1982) Structure of thallium sulfate tellurate Te(OH)6 · Tl2SO4 . Acta Crystallographica, B38, 15541556. CrossRefGoogle Scholar
Zimmermann, I., Kremer, R.K. and Johnsson, M. (2011) crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4 . Journal of Solid State Chemistry, 184,30803084.CrossRefGoogle Scholar
Zitzer, S. and Schleid, T. (2009) Ein neues Selten-Erd- Metall(III)-Oxidchlorid-Oxotellurat(IV): Nd5O4Cl3[TeO3]2 . Zeitschrift für Naturforschung, B: Chemical Sciences, 64,197203 CrossRefGoogle Scholar
Zitzer, S. and Schleid, T. (2010) The first alkali-metal lanthanoid(III) iodide oxotellurate(IV): Na2Lu3I3[TeO4]3. Zeitschrift für anorganische und allgemeine Chemie, 636,10501055 CrossRefGoogle Scholar
Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures.. American Mineralogist, 45, 960973. Google Scholar
Supplementary material: PDF

Christy et al. supplementary material

Table 8-26

Download Christy et al. supplementary material(PDF)
PDF 1.4 MB