Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:01:36.844Z Has data issue: false hasContentIssue false

Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra

Published online by Cambridge University Press:  05 July 2018

J. D. Russell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen
V. C. Farmer
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen
B. Velde
Affiliation:
Laboratoire de Pétrographie, Tours 16-26, Faculté des Sciences de Paris, 9 Quai Saint Bernard, Paris 5ème

Summary

Conditions necessary for exchange between lattice OH groups and D2O in expanding layer silicates are reported. From spectral changes in the 200–1200 cm−1 region resulting from this exchange, in-plane librations of OH co-ordinated to (A1A1), (A1Mg), (A1Fe3+), and (MgMgMg) have been identified in montmorillonite, beidellite, saponite, hectorite, and vermiculite. Both in-plane and out-of-plane librations have been identified for pyrophyllite and celadonite, from comparison of synthetic specimens containing OD with natural or synthetic OH forms. Comparison of hydrogen and deuterium forms of Mg- and Ni-talcs leads to the identification of translational and librational OH vibrations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angell, (C. L.) and Schaffer, (P. C.), 1965. Journ. phys. Chem. 69, 3463.CrossRefGoogle Scholar
Farmer, (V. C.), 1958. Min. Mag. 32, 353.Google Scholar
Farmer, (V. C.), 1968. Clay Minerals, 7, 373.CrossRefGoogle Scholar
Farmer, (V. C.) and Russell, (J. D.), 1964. Spectrochim. Acta, 20, 1149.CrossRefGoogle Scholar
Farmer, (V. C.) and Russell, (J. D.), 1967. Clays and Clay Min. 15, 121.10.1346/CCMN.1967.0150112CrossRefGoogle Scholar
Farmer, (V. C.) and Russell, (J. D.) and Ahlrichs, (J. L.), 1968. Trans. 9th Int. Congr. Soil Sci., Adelaide, 3, 101.Google Scholar
Farmer, (V. C.) and Russell, (J. D.) and Ahlrichs, (J. L.) and Velde, (B.), 1967. Bull. Groupe franç Argiles, 19 (2), 5.CrossRefGoogle Scholar
Heller, (L.), Farmer, (V. C.), Mackenzie, (R. C.), Mitchell, (B. D.), and Taylor, (H. F. W.), 1962. Clay Min. Bull. 5, 56.CrossRefGoogle Scholar
Ishii, (M.), Shimanouchi, (T.), and Nakahira, (M.), 1967. Inorg. Chim. Acta, 1, 387.CrossRefGoogle Scholar
Luth, (W. C.) and Ingamells, (C. O.), 1965. Amer. Min. 50, 255.Google Scholar
Moenke, (H.), 1962. Mineralspektren, Berlin (Akademie-Verlag).Google Scholar
Naumann, (A. W.), Sarrord, (G. J.), and Mumvton, (F. A.), 1966. Clays and Clay Min. 14, 367.CrossRefGoogle Scholar
Roy, (D. M.) and Roy, (R.), 1957. Geochimica Acta, 11, 72.CrossRefGoogle Scholar
Stubican, (V.) and Roy, (R.), 1961. Zeits. Krist. 115, 200.CrossRefGoogle Scholar
Vedder, (W.), 1964. Amer. Min. 49, 736.Google Scholar
Vedder, (W.) and McDonald, (R. S.), 1963. Journ. chem. Phys. 38, 1583.CrossRefGoogle Scholar
Wilkins, (R. W. T.) and Ito, (J.), 1967. Amer. Min. 52, 1649.Google Scholar