Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T05:20:32.520Z Has data issue: false hasContentIssue false

Regeneration of high-silica zeolites after sulfamethoxazole antibiotic adsorption: a combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study

Published online by Cambridge University Press:  05 July 2018

L. Leardini*
Affiliation:
Department of Physics and Earth Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina S. Agata, Italy
A. Martucci
Affiliation:
Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44100 Ferrara, Italy
I. Braschi
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
S. Blasioli
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
S. Quartieri
Affiliation:
Department of Physics and Earth Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina S. Agata, Italy
*

Abstract

The thermal regeneration of sulfamethoxazole (SMX)-loaded Y and ZSM-5 zeolites was studied using a combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study. The evolution of the structural features was monitored in real time in the 30–575°C temperature range by full-profile Rietveld analysis. SMX thermal degradation pathways into high-silica zeolite antibiotic adducts, as well as the release of evolved species are similar to those for pure SMX. The adsorption/desorption process occurs without any significant loss of zeolite crystallinity, though slight deformations to the channel apertures are observed. Regenerated zeolites regain almost perfectly ‘bare’ (i.e. unloaded) material unit-cell parameters and only a slight memory effect, in terms of structural deformations induced by the process, is registered in the channel geometry. Interestingly, these changes do not affect the adsorption properties of the regenerated samples, which are able to re-adsorb comparable amounts of antibiotic molecules as in the first adsorption cycle.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agafonova, E.V., Moshchenskii, Yu.V. and Tkachenko, M.L., (2013) Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry. Russian Journal of Physical Chemistry A, 87, 12911294.CrossRefGoogle Scholar
Alberti, A. and Martucci, A. (2005) Phase transformations and structural modifications induced by heating in microporous materials. Studies in Surface Science and Catalysis, 155, 1943.CrossRefGoogle Scholar
Alberti, A. and Martucci, A. (2011) Reconstructive phase transitions in microporous materials: Rules and factors affecting them. Microporous and Mesoporous Materials, 141, 192198.CrossRefGoogle Scholar
Anderson, M.A., (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environmental Science & Technology, 34, 725727.CrossRefGoogle Scholar
Ash, R., Mauck, B. and Morgan, M. (2002) Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerging Infectious Diseases, 8, 713716.CrossRefGoogle ScholarPubMed
Avisar, D., Primor, O., Gozlan, I. and Mamane, H. (2010) Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air, & Soil Pollution, 209, 439450.CrossRefGoogle Scholar
Baerlocher, Ch., McCusker, L.B., and Olson, D.H., (2007) Atlas of Zeolite Framework Types, 6th Revised Edition. Elsevier, Amsterdam.Google Scholar
Baur, W.H., (1992) Self-limiting distortion by antirotating hinges is the principle of flexible but noncollapsible frameworks. Journal of Solid State Chemistry, 97, 243247.CrossRefGoogle Scholar
Bhange, D.S., and Ramaswamy, V. (2006) Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure. Materials Research Bulletin, 41, 13921402.CrossRefGoogle Scholar
Blasioli, S., Martucci, A., Paul, G., Gigli, L., Cossi, M., Johnston, C.T., and Marchese, L. (2014) Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved hostguest interactions by a combined structural, spectroscopic, and computational approach. Journal of Colloids and Interface Science, 419, 148159.CrossRefGoogle Scholar
Braschi, I., Blasioli, S., Gigli, L., Gessa, C.E., Alberti, A. and Martucci, A. (2010a) Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. Journal of Hazardous Materials, 17, 218225.CrossRefGoogle Scholar
Braschi, I., Gatti, G., Paul, G., Gessa, C.E., Cossi, M. and Marchese, L. (2010b) Sulfonamide antibiotics embedded in high silica zeolite Y: A combined experimental and theoretical study of host-guest and guest-guest interactions. Langmuir, 26, 95249532.CrossRefGoogle Scholar
Braschi, I., Paul, G., Gatti, G., Cossi, M. and Marchese, L. (2013) Embedding monomers and dimers of sulfonamide antibiotics into high silica zeolite Y: an experimental and computational study of the tautomeric forms involved. RSC Advances, 3, 74277437.CrossRefGoogle Scholar
Burgos, J.M., Ellington, B.A., and Varela, M.F., (2005) Presence of multidrug resistant enteric bacteria in dairy farm topsoil. Journal of Dairy Science, 88, 13911398.CrossRefGoogle ScholarPubMed
Choi, K.-J., Kim, S.-G. and Kim, S.-H. (2008) Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon. Environmental Technology, 29, 333342.CrossRefGoogle ScholarPubMed
Cruciani, G. (2006) Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67, 19731994.CrossRefGoogle Scholar
Cruciani, G. and Gualtieri, A.F., (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist, 84, 112119.CrossRefGoogle Scholar
Datt, A., Fields, D. and Larsen, S.C., (2012) An experimental and computational study of the loading and release of aspirin from zeolite HY. The Journal of Physical Chemistry C, 116, 2138221390.CrossRefGoogle Scholar
Datt, A., Burns, E.A., Dhuna, N.A., and Larsen, S.C., (2013) Loading and release of 5-fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Microporous and Mesoporous Materials, 167, 182187.CrossRefGoogle Scholar
Depmeier, W. (2009) Some examples of temperature and time resolved studies of the dehydration and hydration behavior of zeolites and clathrates. Particle & Particle Systems Characterization, 26, 138150.CrossRefGoogle Scholar
Fukahori, S., Fujiwara, T., Ito, R. and Funamizu, N. (2011) pH-dependent adsorption of sulfa drugs on high silica zeolite: Modeling and kinetic study. Desalination, 275, 237242.CrossRefGoogle Scholar
Gatta, G.D., Comodi, P., Zanazzi, P.F., and Boffa Ballaran, T. (2005) Anomalous elastic behavior and high-pressure structural evolution of zeolite levyne. American Mineralogist, 90, 645652.CrossRefGoogle Scholar
Gur-Reznik, S., Katz, I. and Dosoretz, C.G., (2008) Removal of dissolved organic matter by granularactivated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research, 42, 15951605.CrossRefGoogle ScholarPubMed
Hammersley, A.P., Svensson, S.O., and Thomson, A. (1994) Calibration and correction of spatial distortions in 2D detector systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 346, 312321.CrossRefGoogle Scholar
Harlin, E., Makkonen, J. and Tiitta, M. (2004) A method for the regeneration of zeolite catalysts. Patent Publication Number: WO 2004080591 A1.Google Scholar
Hay, D.G., and Jaeger, H. (1984) Orthorhombicmonoclinic phase changes in ZSM-5 zeolite/silicalite. Journal of the Chemical Society, Chemical Communications, 21, 1433.CrossRefGoogle Scholar
Heberer, T. (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 517.CrossRefGoogle ScholarPubMed
Iversen, A., Kuhn, I., Franklin, A. and Mollby, R. (2002) High prevalence of vancomycin-resistant enterococci in Swedish sewage. Applied and Environmental Microbiology, 68, 28382842.CrossRefGoogle ScholarPubMed
Kahle, M. and Stamm, C. (2007a) Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 41, 132138.CrossRefGoogle Scholar
Kahle, M. and Stamm, C. (2007b) Time and pHdependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 68, 12241231.CrossRefGoogle Scholar
Khalid, M., Joly, G., Renaud, A. and Magnoux, P. (2004) Removal of Phenol from Water by Adsorption Using Zeolites. Industrial & Engineering Chemistry Research, 43, 52755280.CrossRefGoogle Scholar
Kim, S.-R., Nonaka, L. and Suzuki, S. (2004) Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiology Letters, 237, 147156.CrossRefGoogle ScholarPubMed
Kummerer, K. (2004) Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54, 311320.CrossRefGoogle ScholarPubMed
Larson, A.C., and Von Dreele, R.B., (2004) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Le Fur, C., Legeret, B., de Sainte Claire, P., Wong-Wah- Chung, P. and Sarakha, M. (2013) Liquid chromatography/ electrospray ionization quadrupole time-offlight mass spectrometry for the analysis of sulfaquinoxaline byproducts formed in water upon solar light irradiation. Rapid Communications in Mass Spectrometry, 27, 722730.CrossRefGoogle Scholar
Leardini, L., Martucci, A. and Cruciani, G. (2012) The unusual thermal expansion of pure silica sodalite probed by in situ time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 151, 163171.CrossRefGoogle Scholar
Leardini, L., Martucci, A. and Cruciani, G. (2013a) The unusual thermal behaviour of boron-ZSM-5 probed by “in situ” time-resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 173, 614.CrossRefGoogle Scholar
Leardini, L., Martucci, A., Alberti, A. and Cruciani, G. (2013b) Template burning effects on stability and boron coordination in boron levyne studied by in situ time resolved synchrotron powder diffraction. Microporous and Mesoporous Materials, 167, 117126.CrossRefGoogle Scholar
Leardini, L., Quartieri, S., Vezzalini, G., Martucci, A. and Dmitriev, V. (2013c) Elastic behavior and high pressure-induced phase transition in chabazite: New data from a natural sample from Nova Scotia. Microporous and Mesoporous Materials, 170, 5261.CrossRefGoogle Scholar
Li, S., Tuan, V.A., Noble, R.D., and Falconer, J.L., (2003) MTBE adsorption on all-silica b zeolite. Environmental Science & Technology, 37, 40074010.CrossRefGoogle Scholar
Lopez, A., Soulard, M. and Guth, J.L., (1990) Temperature-induced monoclinic/orthorhombic transition in germanium MFI-type zeolites. Zeolites, 10, 134136.CrossRefGoogle Scholar
Marra, G.L., Artioli, G., Fitch, A.N., Milanesio, M. and Lamberti, C. (2000) Neutron powder diffraction study of orthorhombic and monoclinic defective silicalite. Microporous and Mesoporous Matererials, 40, 8594.CrossRefGoogle Scholar
Martucci, A., Pasti, L., Marchetti, N., Cavazzini, A., Dondi, F. and Alberti, A. (2012) Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Microporous and Mesoporous Materials, 148, 174184.CrossRefGoogle Scholar
Martucci, A., Cremonini, M.A., Blasioli, S., Gigli, L., Gatti, G., Marchese, L. and Braschi, I. (2013) Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous and Mesoporous Materials, 170, 274286.CrossRefGoogle Scholar
Mentzen, B.F., (1992) Structural correlations between the framework symmetry of highly siliceous MFI zeolitic materials (silicalite, ZSM-5 for Si/Al>75) and the location or the geometry of sorbed molecules. Materials Research Bulletin, 27, 831838.CrossRefGoogle Scholar
Mookherjee, S., Shoen, C. and Cynamon, M. (2012) In vitro activity of JPC 2067 alone and in combination with sulfamethoxazole against nocardia species. Antimicrobial Agents and Chemotherapy, 56, 11331134.CrossRefGoogle ScholarPubMed
Nagaraj, M., Boominathan, M., Perumal, D., Muthusubramanian, S. and Bhuvanesh, N. (2012) Copper(i)-catalyzed cascade sulfonimidate to sulfonamide rearrangement: synthesis of imidazo[1,2- a][1,4]diazepin-7(6h)-one. The Journal of Organic Chemistry, 77, 63196326.CrossRefGoogle ScholarPubMed
Niu, J., Zhang, L., Li, Y., Zhao, J., Lv, S. and Xiao, K. (2013) Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. Journal of Environmental Sciences, 25, 10981106.CrossRefGoogle ScholarPubMed
Occelli, M.L., and Robson, H.E., (editors) (1989) Zeolite Synthesis. ACS Symposium Series 398, American Chemical Society, Washington, DC.Google Scholar
Pantani, O., Pusino, A., Calamai, L., Gessa, C. and Fusi, P. (1996) Adsorption and degradation of rimsulfuron on Al hectorite. Journal of Agricultural and Food Chemistry, 44, 617621.CrossRefGoogle Scholar
Pasti, L., Martucci, A., Nassi, M., Cavazzini, A., Alberti, A. and Bagatin, R. (2012) The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites. Microporous and Mesoporous Materials, 160, 182193.CrossRefGoogle Scholar
Pasti, L., Sarti, E., Cavazzini, A., Marchetti, N., Dondi, F. and Martucci, A. (2013) Factors affecting drug adsorption on beta zeolites. Journal of Separation Science, 36, 16041611.CrossRefGoogle ScholarPubMed
Perego, C., Bagatin, R., Tagliabue, M. and Vignola, R. (2013) Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous and Mesoporous Materials, 166, 3749.CrossRefGoogle Scholar
Richter, M.K., Sander, M., Krauss, M., Christl, I., Dahinden, M. G . , Schneider, M.K., and Schwarzenbach, R.P., (2009) Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environmental Science & Technology, 43, 66326638.CrossRefGoogle ScholarPubMed
Roisnel, T. and Rodríquez-Carvajal, J., (2001) WinPLOTR: A windows tool for powder diffraction pattern analysis. Materials Science Forum, 378–381, 118123.CrossRefGoogle Scholar
Sarmah, A.K., Meyer, M.T., and Boxall, A.B.A. (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725759.CrossRefGoogle Scholar
Schwartz, T., Kohnen, W., Jansen, B. and Obst, U. (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43, 325335.CrossRefGoogle ScholarPubMed
Seryotkin, Y.V., Joswig, W., Bakakin, V.V., Belitsky, I.A., and Fursenko, B.A., (2003) High-temperature crystal structure of wairakite. European Journal of Mineralogy, 15, 475484.CrossRefGoogle Scholar
Takasuka, M. and Nakai, H. (2001) IR and Raman spectral and X-ray structural studies of polymorphic forms of sulfamethoxazol e. Vibrational Spectroscopy, 25, 197204.CrossRefGoogle Scholar
Thiele-Bruhn, S., Seibicke, T., Schulten, H.R., and Leinweber, P. (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. Journal of Environmental Quality, 33, 13311342.CrossRefGoogle ScholarPubMed
Thompson, P., Cox, D.E., and Hastings, J.B., (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 . Journal of Applied Crystallography, 20, 7983.CrossRefGoogle Scholar
Toby, B.H., (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Vignola, R., Cova, U., Fabiani, F., Sbardellati, T. and Sisto, R. (2009) Process for the regeneration of nonpolar adsorbing zeolites used for the treatment of contaminated water. Patent publication number: WO 2009000429 A1.Google Scholar
Xu, B., Mao, D., Luo, Y. and Xu, L. (2011) Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresource Technology, 102, 70697076.CrossRefGoogle ScholarPubMed
Yang, W., Zheng, F., Xue, X. and Lu, Y. (2011) Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 362, 503509.CrossRefGoogle ScholarPubMed
Zhang, D., Pan, B., Zhang, H., Ning, P. and Xing, B.S., (2010) Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology, 44, 38063811.CrossRefGoogle ScholarPubMed
Zuccato, E., Castiglioni, S. and Fanelli, R.J., (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Journal of Hazardous Materials, 122, 205209.CrossRefGoogle ScholarPubMed