Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T19:43:24.976Z Has data issue: false hasContentIssue false

The rates of dissolution of olivine, plagioclase, and quartz in a basalt melt

Published online by Cambridge University Press:  05 July 2018

Colin H. Donaldson*
Affiliation:
Department of Geology, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland

Abstract

The dissolution rates of spheres of two magnesian olivines, two plagioclases, and quartz in tholeiitic basalt have been determined at three super-liquidus temperatures and one-atmosphere pressure. There are considerable differences in the rates among the minerals, e.g. at 1210°, 12° above the liquidus temperature of the basalt, labradorite dissolves at 86 µm/h. and the magnesian olivines at 9 and 14 µm/h. The rates are not time dependent and this, coupled with the existence of concentration gradients in the composition of quenched melt adjacent to partially dissolved crystals, indicates that the dissolution rates are dictated by a combination of diffusion and convection of components to and from the crystal-liquid interface. Values for the activation enthalpy of dissolution are small for quartz and plagioclase (40–50 kcal mol−1) but large for olivine 73–118 kcal mol−1). Dissolution of plagioclase in rock melts seems to be a much more rapid process than crystal growth, whereas olivines apparently dissolve and grow at similar rates. Crystal dissolution is sufficiently slow that ascending, crystal-bearing magma may become superheated and yet fail to dissolve the crystal fraction before quenching; this may be the reason that olivine phenocrysts are often rounded.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, R. A. (1980) Kinetics of Weathering and Diagenesis. In Kinetics of Geochemical Processes (Lasaga, A. C. and Kirkpatrick, R. J., eds.), 111-34. Mineral. Soc. Am.Google Scholar
Bond, W. L. (1951) Rev. Sci. Instrum, 22, 344-5.CrossRefGoogle Scholar
Bowen, N. L. (1913) Am. J. Sci. 35, 577-99.CrossRefGoogle Scholar
Bowen, N. L. and Schairer, J. F. (1935) Am. d. Sci. 26, 151-217.Google Scholar
Burton, J. A., and Slichter, W. P. (1958) The distribution of solute elements: steady-state growth. In Transistor Technolooy, 1 (Bridgers, H. E., ed.), 71106. Van Nostrand, New York.Google Scholar
Carruthers, J. A. (1976) J. Crystal Growth, 32, 1326.CrossRefGoogle Scholar
Chalmers, B. (1964) Principles of Solidification. 319 pp. Wiley and Sons, New York.Google Scholar
Donaldson, C. H. (1975) Lithos, 69, 163-74.CrossRefGoogle Scholar
Donaldson, C. H. (1979a) Contrib. Mineral. Petrol. 69, 21-32.CrossRefGoogle Scholar
Donaldson, C. H. (1979b) Mineral. Ma9. 43, 115-19.Google Scholar
Donaldson, C. H., Williams, R. J., and Lofgren, G. E. (1975) Am. Mineral. 60, 324-6.Google Scholar
Dowty, E. (1980) Crystal Growth and Nucleation Theory and the Numerical Simulation of Igneous Crystallization. In Physics ofMagmatic Processes (Hargraves, R. B., ed.), 419-85. Princeton Univ. Press.CrossRefGoogle Scholar
Elwell, D., and Scheel, H. J. (1975) Crystal Growth from High-Temperature Solutions. Academic Press.Google Scholar
Finch, R. H., and Anderson, C. A. (1930) Univ. Calif. Dept. Geol. Sci. Bull. 19, 245-73.Google Scholar
Harrison, T. M., and Watson, E. B. (1983) Contrib. Mineral. Petrol. 84, 6672.CrossRefGoogle Scholar
Henderson, P. (1982) Inorganic Geochemistry. 353 pp. Pergamon Press, Oxford.Google Scholar
Hofman, A. W. (1980) Diffusion in natural silicate melt: a critical review. In Physics of Magmatic Processes (Hargraves, R. B., ed.), 385417. Princeton Univ. Press.CrossRefGoogle Scholar
Huppert, H. E., and Sparks, R. S. J. (1984) Ann. Rev. Earth Planet. Sci. 12, 11-37.CrossRefGoogle Scholar
Kirkpatrick, R. J. (1975) Am. Mineral. 60, 798814.Google Scholar
Kirkpatrick, R. J. (1977) Bull. Geol. Soc. Am. 88, 7884.2.0.CO;2>CrossRefGoogle Scholar
Kirkpatrick, R. J. (1980) Kinetics of Crystallization of Igneous Rocks. In Kinetics of Geochemical Processes (Lasaga, A. C. andKirkpatrick, R. J., eds.), 321-95. Mineral. Soc. Am.CrossRefGoogle Scholar
Kuo, L-C., and Kirkpatrick, R. J. (1983) EOS (Trans. Am. Geophys. Union), 64, 349.Google Scholar
Kutolin, V. A., and Agafanov, L. V. (1978) Geol. Geofiz. (Acad. Nauk USSR, Novosibirsk), 5, 3-13.Google Scholar
Lacroix, A. (1893) Les Enclaves des Roches Volcaniques. Masson, Paris.Google Scholar
Larsen, E. S., and Irving, J. (1938) Am. Mineral. 23, 227-57.Google Scholar
Lofgren, G. E. (1983) J. Petrol. 24, 229-55.CrossRefGoogle Scholar
Moorbath, S., Thompson, R. N., and Oxburgh, E. R. (1984) Phil. Trans. R. Soc. A310, 437780.Google Scholar
Roeder, P. L., and Emslie, R. F. (1970) Contrib. Mineral. Petrol. 29, 275-89.CrossRefGoogle Scholar
Sato, H. (1974) Ibid. 50, 49-64.Google Scholar
Sato, K., Kahima, K., and Sunagawa, I. (1981) J. Jap. Assoc. Petrols. Econ. Geols. 76, 294307.Google Scholar
Sato, M. (1978) Geophys. Res. Letts. 5, 447-9.CrossRefGoogle Scholar
Scarfe, C. M., Takahashi, E., and Yoder, H. S. (1980) Carnegie Inst. Wash. Yearb. 79, 290-6.Google Scholar
Shaw, H. R. (1969) J. Petrol. 10, 510-35.CrossRefGoogle Scholar
Shaw, H. R. (1972) Am. J. Sci. 272, 870-93.CrossRefGoogle Scholar
Sparks, R. S. J., Huppert, H. E., and Turner, J. S. (1984) Phil. Trans. R. Soc. A310, 511-34.Google Scholar
Thornber, C. R., and Huebner, J. S. (1982). EOS (Trans. Am. Geophys. Union), 63, 452-3.Google Scholar
Tritton, D. J. (1977) Physical Fluid Dynamics. 362 pp. Van Nostrand, New York.CrossRefGoogle Scholar
Turner, J. S. (1973) Buoyancy Effects in Fluids. 367 pp. Cambridge Univ. Press.CrossRefGoogle Scholar
Watson, E. B. (1982) Contrib. Mineral. Petrol. 80, 7387.CrossRefGoogle Scholar
Wilcox, R. E. (1944) Bull. Geol. Soc. Amer. 55, 1047-80.CrossRefGoogle Scholar