Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T02:36:45.988Z Has data issue: false hasContentIssue false

Rare earth and other trace element mobility accompanying albitization in a Proterozoic granite, W. Bergslagen, Sweden

Published online by Cambridge University Press:  05 July 2018

J. H. Baker*
Affiliation:
Geologisch Instituut, University of Amsterdam, Nwe. Prinsengracht 130, 1018 VZ Amsterdam, The Netherlands

Abstract

Zones of albitization 20 m wide are developed in the peraluminous, undeformed Proterozoic Bastfallshöjden granite, W. Bergslagen, central Sweden. During albitization Na, Si, Mg, Ni, Zn, and Ga are added, while Fe2+, Fe3+, Mn, K, Sc, Rb, Cs, Ba, Pb, U, and F are lost, together with the rare earth elements (REE) in decreasing amounts with increasing atomic number. Ti, Al, P, and Y were immobile. Trace element data for chlorites separated from hydrothermally altered country rocks and from a quartz-chlorite vein in the albitized granite show similar REE patterns indicating a common origin: the most altered granite has a similar REE pattern, probably resulting from interaction with the same hydrothermal fluid which produced the chlorites, in which seawater is thought to have been an important constituent.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G., Bollmark, B., Björk, L., and Wiklander, U. (1983) Geol. För. Förh. 105, 7881.Google Scholar
Alderton, D. H. M., Pearce, J. A., and Potts, P. J. (1980) Earth Planet. Sei. Lett. 49, 149-65.Google Scholar
Baker, J. H., and de Groot, P. A. (1983a) Contrib. Mineral. Petrol. 82, 119-30.Google Scholar
Baker, J. H., and de Groot, P. A. (1983b) Terra Cognita 3, 167 (abstract).Google Scholar
Bowden, P., and Whitley, J. E. (1974) Lithos, 7, 15-21.Google Scholar
Drake, M. J. (1975) Geochim. Cosmochim. Acta, 39, 55-64.Google Scholar
Evenson, N. M., Hamilton, P. J., and O'Nions, R. K. (1978) Ibid. 42, 1199-212.Google Scholar
Floyd, P. A., and Winchester, J. A. (1978) Chem. Geol. 21, 291-306.Google Scholar
Flynn, R. T., and Burnham, M. (1978) Geochim. Cosmochim. Acta, 42, 685701.Google Scholar
Frietsch, R. (1982) Sver. Geol. Unders. Ser. C, 791.Google Scholar
Fryer, B. J., and Edgar, A. D. (1977) Contrib. Mineral. Petrol. 61, 3548.Google Scholar
Helmers, H. (1984) Neues Jahrb. Mineral. (in press).Google Scholar
Hey, M. H. (1954) Mineral. Mag. 30, 277-92.Google Scholar
Hughes, C. J. (1972) Geol. Mag. 109, 513-27.Google Scholar
Hynes, A. (1980) Contrib. Mineral. Petrol. 75, 79-87.Google Scholar
Kerrich, R., and Fryer, B. J. (1979) Can. J. Earth. Sci. 16, 440-58.Google Scholar
Kilinc, I. A., and Burnham, C. W. (1972) Econ. Geol. 67, 231-5.Google Scholar
Lagerblad, B., and Gorbatschev, R. (1983) Sver. Geol. Unders. Rapporter och Meddelanden, 34, 58-175.Google Scholar
Ludden, J., Gélinas, L., and Trudel, P. (1982) Can. J. Earth. Sei. 19, 2276-87.Google Scholar
McLennan, S. M., and Taylor, S. R. (1979) Nature, 282, 247-50.Google Scholar
Magnusson, N. H. (1925) Persbergs Malmtrakt. Kungl. Kommers-kollegium.Google Scholar
Magnusson, N. H. (1970) Sver. Geol. Unders. Ser. C, no. 643, 364 pp.Google Scholar
Magnusson, N. H. and Lundqvist, G. (1932) Ibid. Ser. Aa, no. 175.Google Scholar
Martin, R. F., Whitley, J. E., and Woolley, A. R. (1978) Contrib. Mineral. Petrol. 66, 69-73.Google Scholar
Mineyev, D. A. (1963) Geochemistry 12, 1129-49.Google Scholar
Moorman, A. C., Andriessen, P. A. M., Boelrijk, N. A. I. M., Heheda, E. H., Oen, I. S., Priem, H. N. A., Verdurmen, E. A. Th., Verschure, R. H., and Wiklander, U. (1982) Geot. För. Förh. 104, 19.Google Scholar
Mottl, M. J. (1983) Geol. Soc. Am. Bull. 94, 161-80.Google Scholar
Oen, I. S. (1982) Geol. Mijnbouw, 61, 305-7.Google Scholar
Oen, I. S. (1983) Ibid. 62, 301-3.Google Scholar
Oen, I. S., Helmers, H., Verschure, R. H., and Wiklander, U. (1982) Geol. Rundschau 71, 182-94.Google Scholar
Oen, I. S. and Verschure, R. H. (1982) Geol. Mijnbouw, 61, 301-4.Google Scholar
Oen, I. S., Verschure, R. H., and Wiklander, U. (1984) Ibid. 63, 85-8.Google Scholar
Pearce, J. A. and Norry, M. J. (1979) Contrib. Mineral. Petrol. 69, 33-47.Google Scholar
Robbie, R. A., Hemingway, B. S., and Fisher, J. C. (1978) U.S. Geol. Surv. Bull. 1452.Google Scholar
Sundius, N. L. (1923) Sver. Geol. Unders. Ser. C, no. 32.Google Scholar
Sverjensky, D. A. (1984) Earth Planet. Sci. Lett. 67, 708.Google Scholar
Taylor, R. P., and Fryer, B. J. (1982) In Metallization associated with acid magmatism (Evans, A. M., ed.), 357-65. J. Wiley & Sons.Google Scholar
Strong, D. F., and Fryer, B. J. (1981) Contrib. Mineral. Petrol. 77, 267-71.Google Scholar
Tuttle, O. F., and Bowen, N. L. (1958) Mere. Geol. Soc. Am. no. 74.Google Scholar
Vidal, Ph., Cocherie, A., and LeFort, P. (1982) Geochim. Cosmochim. Acta, 46, 2279-92.Google Scholar
ViéLeSage, R., Quisefit, J. P., Dejean de la Bâttie, R., and Faucherie, J. (1979) X-ray Spectrometry 8, 3, 121-8.Google Scholar
Welin, E., Gorbatschev, R., and Lundegardh, P. H. (1977) Geol. För. Förh. 99, 363-7.Google Scholar
Welin, E., Wiklander, U., and Kähr, A. M. (1980) Ibid. 102, 269-72.Google Scholar
Winchester, J. A., and Floyd, P. A. (1976) Earth Planet. Sci. Lett. 28, 459-69.Google Scholar
Zielinski, R. A. (1982) Chem. Geol. 35, 185-204.Google Scholar