Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T03:13:49.562Z Has data issue: false hasContentIssue false

Raman microscopic study of the Li amphibole holmquistite, from the Martin Marietta Quarry, Bessemer City, NC, USA

Published online by Cambridge University Press:  05 July 2018

J. T. Kloprogge*
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia
M. H. Case
Affiliation:
Woodman Summer Camp, 657 Woodmen Camp Trail, Randleman, NC 27317, USA
R. L. Frost
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia
*

Abstract

The Raman spectrum of holmquistite, a Li-containing orthorhombic amphibole from Bessemer City, USA has been measured. The OH-stretching region is characterized by bands at 3661, 3646, 3634 and 3614 cm−1 assigned to 3 Mg–OH, 2 Mg + Fe2+–OH, Mg + 2Fe2+–OH and 3 Fe2+–OH, respectively. These Mg and Fe2+ cations are located at the M1 and M3 sites and have a Fe2+/(Fe2+ + Mg) ratio of 0.35. The 960–1110 cm−1 region represents the antisymmetric Si–O–Si and O–Si–O stretching vibrations. For holmquistite, strong bands are observed around 1022 and 1085 cm−1 with a shoulder at 1127 cm−1 and minor bands at 1045 and 1102 cm−1. In the region 650–800 cm−1 bands are observed at 679, 753 and 791 cm−1 with a minor band around 694 cm−1 attributed to the symmetrical Si–O–Si and Si–O vibrations. The region below 625 cm−1 is characterized by 14 vibrations related to the deformation modes of the silicate double chain and vibrations involving Mg, Fe, Al and Li in the various M sites. The 502 cm−1 band is a Li–O deformation mode while the 456, 551 and 565 cm−1 bands are Al–O deformation modes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burns, R.G. and Strens, R.G.J. (1966) Infrared study of the hydroxyl bands in clino-amphiboles. Science, 153, 890–2.CrossRefGoogle Scholar
Della Ventura, G., Robert, J.-L. and Bény, J.-M. (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti-rich potassic richterite: evidence from XRD, FTIR and Raman studies. Amer. Mineral., 76, 1134–40.Google Scholar
Della Ventura, G., Robert, J.-L., Raudsepp, M., Hawthorne, F.C. and Welch, M.D. (1993) The OH-F substitution in Ti-rich potassium richterite: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O–Na2O–CaO–MgO–SiO2–TiO2– H2O–HF. Amer. Mineral., 78, 980–7.Google Scholar
Della Ventura, G., Robert, J.-L., Raudsepp, M., Hawthorne, F.C. and Welch, M.D. (1997) Site occupancies in synthetic monoclinic amphiboles: Rietveld structure refinement and infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. Amer. Mineral., 82, 291–301.CrossRefGoogle Scholar
Dowty, E. (1987) Vibrational interactions of tetraedra in silicate glasses and crystals: I. Calculations on ideal silicate aluminate-germanate structural units. Phys. Chem. Miner., 14, 80–93.CrossRefGoogle Scholar
Frost, M.T. and Tsambourakis, G. (1987) Holmquistite-bearing amphibolite from Greenbushes, Western Australia. Mineral. Mag., 51, 585–91.CrossRefGoogle Scholar
Frost, R.L. and Kristof, J. (1997) Intercalation of halloysite: a Raman spectroscopic study. Clays Clay Miner., 45, 551–63.CrossRefGoogle Scholar
Frost, R.L. and Rintoul, L. (1996) Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Appl. Clay Sci., 11, 171–83.CrossRefGoogle Scholar
Frost, R.L. and Kloprogge, J.T. (2000) Vibrational spectroscopy of ferruginous smectite and nontronite. Spectrochim. Acta A, 56, 2177–89.CrossRefGoogle Scholar
Gadsden, J.A. (1975) Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworth & Co. (Publishers) Ltd., London.Google Scholar
Gillet, Ph., Reynard, B. and Tequi, C. (1989) Thermodynamic properties of glaucophane. New data from calorimetric and spectroscopic measurements. Phys. Chem. Miner., 16, 659–67.Google Scholar
Ginzburg, I.V., Rogachev, D.L. and Bondareva, A.M. (1958) New data on holmquistite. Dokl. Akad. Nauk SSSR, 119, 1013–6 (in Russian).Google Scholar
Gorelov, G.F., Gorb, A.M., Kosukhina, I.G., Safonov, A.M. and Shestakov, A.V. (1983) Holmquistite from Tarynnakhsky ferruginous quartzite locality, Charo-Takkinsky area (Aldan Shield). Geologiia i Geofizika, 2, 129–31 (in Russian).Google Scholar
Hawthorne, F.C. (1981 a) Crystal chemistry of the amphiboles. Pp. 1102 in: Amphiboles and other Hydrous Pyriboles – Mineralogy (Veblen, D.R., editor). Reviews in Mineralogy, 9A. Mineralogical Society of America, Washington, D.C. Google Scholar
Hawthorne, F.C. (1981 b) Amphibole spectroscopy. Pp. 103-39 in: Amphiboles and other Hydrous Pyriboles – Mineralogy (Veblen, D.R., editor). Reviews in Mineralogy, 9A. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Hess, F.L. and Stevens, R.E. (1937) A rare-alkaline biotite from Kings Mountain, North Carolina. Amer. Mineral., 22, 1040–4.Google Scholar
Ishida, K. (1990) Identification of infrared OH librational bands of talc-willemseite solid solutions and Al(IV)-free amphiboles through deuteration. Mineral. J., 15, 93–104.CrossRefGoogle Scholar
Kloprogge, J.T., Frost, R.L. and Rintoul, L. (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys. Chem. Chem. Phys., 1, 2559–64CrossRefGoogle Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. Canad. Mineral., 35, 153–65.Google Scholar
Law, A.D. (1973) Critical evaluation of ‘statistical best fits’ to Mössbauer spectra. Amer. Mineral. 58, 128–31.Google Scholar
Law, A.D. and Whittaker, E.J.W. (1981) Studies of the orthoamphiboles I. – The Mössbauer and infrared spectra of holmquistite. Bull. Minéral., 104, 381–6.CrossRefGoogle Scholar
Lazarev, A.N. (1972) Vibrational Spectra and Structure of Silicates. Consultants Bureau (Plenum Publishing Company Ltd.), New York, London, 302 pp.Google Scholar
Malezieux, J.M., Collomb, P., Bouyx, E. and Cavagnat, R. (1993) Study of the hydroxyl bands in glauco phanes by Raman microscopy. Terra Abstracts, 5 suppl. 1, 495–.Google Scholar
Mohanan, K. (1993) Vibrational spectroscopic studies of olivines, pyroxenes, and amphiboles at high temperature and pressures. PhD Thesis, Univ. Hawaii.Google Scholar
Nickel, E.H., Karpoff, B.S., Maxwell, J.A. and Rowland, J.F. (1960) Holmquistite from Barraute, Quebec. Canad. Mineral., 6, 504–12.Google Scholar
Palache, C., Davidson, S.C. and Goranson, E.A. (1930) The hiddenite deposit in Alexander County, North Carolina. Amer. Mineral., 15, 280–302.Google Scholar
Ryskin, Y.I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. Pp. 137-81 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph, 4. Mineralogical Society, London.CrossRefGoogle Scholar
Strens, R.G.J. (1974) The common chain, ribbon, and ring silicates. Pp. 305-30 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph, 4. Mineralogical Society, London.CrossRefGoogle Scholar
Turrell, G. (1972) Infrared and Raman Spectra of Crystals. Academic Press, London.Google Scholar
Vogt, T., Bastiansen, O. and Skancke, P. (1958) Holmquistite as a rhombic amphibole. Amer. Mineral., 43, 981–2.Google Scholar
von Knorring, O. and Hornung, G. (1961) On the lithium amphibole holmquistite, from Benson pegmatite mine, Mtoko, Southern Rhodesia. Mineral. Mag., 32, 731–5.Google Scholar
Walter, F. and Walitzi, E.M. (1985) Holmquistit vom Brandruecken (Weinebene), Koralpe/Kaernten; ein Vorbericht. Die Karinthin, 92, 245–8.Google Scholar
Wang, A., Dhamelincourt, P. and Turrell, G. (1988 a) Raman microspectroscopic study of the cation distribution in amphiboles. Appl. Spectrosc., 42, 1441–50.CrossRefGoogle Scholar
Wang, A., Dhamelincourt, P. and Turrell, G. (1988 b) Infrared and low-temperature micro-Raman spectra of the OH stretching vibrations in cummingtonite. Appl. Spectrosc., 42, 1451–7.CrossRefGoogle Scholar
Wilkins, R.W.T., Davidson, L.R. and Ross, J.R. (1970) Occurrence and infrared spectra of holmquistite and hornblende from Mt. Marion, near Kalgoorlie, Western Australia. Contrib. Mineral. Petrol., 28, 280–7.CrossRefGoogle Scholar
Yang, H., Konzett, J., Prewitt, C.T. and Fei, Y. (1999) Single-crystal structure refinement of synthetic M4K-substituted potassic richterite, K(KCa)Mg5 Si8O22(OH)2 . Amer. Mineral., 84, 681–4.CrossRefGoogle Scholar