Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:13:06.391Z Has data issue: false hasContentIssue false

Prismatine: revalidation for boron-rich compositions in the kornerupine group

Published online by Cambridge University Press:  05 July 2018

Edward S. Grew
Affiliation:
Department of Geological Sciences, Universtity of Maine, 5711 Boardman Hall, Orono, ME 04469-5711, USA
Mark A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada

Abstract

Kornerupine and prismatine were introduced independently by Lorenzen in 1884 (but published in 1886 and 1893) and by Sauer in 1886, respectively. Ussing (1889) showed that the two minerals were sufficiently close crystallographically and chemically to be regarded as one species. However, recent analyses of boron using the ion microprobe and crystal structure refinement, indicate that the boron content of one tetrahedral site in kornerupine ranges from 0 to 1. Kornerupine and prismatine, from their respective type localities of Fiskenæsset, Greenland and Waldheim, Germany, are distinct minerals, members of an isomorphic series differing in boron content. For this reason, we re-introduce Sauer’s name prismatine for kornerupines with B > 0.5 atoms per formula unit (p.f.u.) of 22(O,OH,F), and restrict the name kornerupine sensu stricto to kornerupines with B < 0.5 p.f.u. Kornerupine sensu lato is an appropriate group name for kornerupine of unknown boron content. Kornerupine sensu stricto and prismatine from the type localities differ also in Fe2+/Mg ratio, Si − (Mg + Fe2+ + Mn) content, Al content, F content, colour, density, cell parameters, and paragenesis. Both minerals formed under granulite-facies conditions with sapphirine and phlogopite, but kornerupine sensu stricto is associated with anorthite and hornblende or gedrite, whereas prismatine is found with oligoclase (An9–13), sillimanite, garnet, and/or tourmaline. Occurrences at other localities suggest that increasing boron content extends the stability range of prismatine relative to that of kornerupine sensu stricto.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friend, C.R.L. (1995) Occurrences of boron-free and boron-poor kornerupine. Mineral. Mag., 59, 163—6.CrossRefGoogle Scholar
Girgis, K. Gubelin, E. and Weibel, M. (1976) Vanadiumhaltiger griiner Komerupin vom Kwale- Distrikt, Kenya. Schweiz. Mineral. Petrogr. Mitteilungen, 56, 65—8.Google Scholar
Goβner, B. and Muβgnug, F. (1928) Vergleichende rontgenographische Untersuchung von Magnesiumsilikaten. Neues Jahrb. Mineral, Geol. u. Palaont. Abt. A, 58, 213—52.Google Scholar
Grew, E.S. (1986) Petrogenesis of kornerupine at Waldheim (Sachsen), German Democratic Republic. Zeits. geol. Wissenschaften, 14, 525—58.Google Scholar
Grew, E.S. (1989) A second occurrence of kornerupine in Waldheim, Saxony, German Democratic Republic. Zeits. geol. Wissenschaften, 17, 67—76.Google Scholar
Grew, E.S., Herd, R.K. and Marquez, N. (1987) Boronbearing kornerupine from Fiskenaesset, West Greenland: a re-examination of specimens from the type locality. Mineral Mag., 51, 695—708.CrossRefGoogle Scholar
Grew, E.S., Chernosky, J.V., Werding, G., Abraham, K., Marquez, N. and Hinthome, J.R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-Ray study emphasizing Li, Be, B and F contents. J. Petrol. y 31, 1025–70.CrossRefGoogle Scholar
Grew, E.S., Hiroi, Y., Motoyoshi, Y., Kondo, Y., Jayaliteke, S J.M. and Marquez, N. (1995) Iron-rich kornerupine in sheared pegmatite from the Wanni Complex, at Homagama, Sri Lanka. Eur. J. Mineral., 7, 623-36CrossRefGoogle Scholar
Hawthorne, F.C., Cooper, M., Bottazzi, P. Ottolini, L., Ercit, T.S. and Grew, E.S. (1995) Micro-analysis of minerals for boron by SREF, SIMS and EMPA: A comparative study. Canad. Mineral., 33, 389—97.Google Scholar
Hey, M.H., Anderson, B.W. and Payne, C.J. (1941) Some new data concerning kornerupine and its chemistry. Mineral. Mag., 26, 119—30.Google Scholar
Kalkowsky, E. (1907) Der Korundgranulit von Waldheim in Sachsen. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden, 2, 47—65.Google Scholar
Klaska, R. and Grew, E.S. (1991) The crystal structure of boron-free kornerupine: Conditions favoring the incorporation of variable amounts of B through [4]B ⇆ [4]Si substitution in kornerupine. Amer. Mineral., 76, 1824–35.Google Scholar
Kuryleva, N.A. (1960) Prismatine from the Bug River area. Zap. Vses. Mineral. Obshch., 2 nd Series, 89, no. 6, 711–3 (in Russian).Google Scholar
Lacroix, A. et de Gramont, A. (1919) Sur la presence du bore dans quelques silico-aluminates basiques naturels. Comptes Rendus de la Academie des Sciences, 168, 857—61.Google Scholar
Lai, R.K., Ackermand, D. and Upadhyay, H. (1987) P- T-X relationships deduced from corona textures in sapphirine-spinel-quartz assemblages from Paderu, southern India. J. Petrol., 28, 1139—68.Google Scholar
Lorenzen, J. (1886) Untersuchungen gronlandischer Mineralien. Zeitschrift fiir Kristallographie und Mineralogie, 11, 315—8.Google Scholar
Lorenzen, J. (1893) Unders0gelse af Mineralier fra Gr0nland. Meddelelser om Grønland, 7, 1—32 [originally scheduled for publication in 1884].Google Scholar
Moenke, H. (1962) Nachweis von B03- and B04- Gruppen in den haufigsten natiirlich gebildeten Silikaten. Silikattechnik, 13, 287—8.Google Scholar
Moore, P.B. and Araki, T. (1979) Kornerupine: a detailed crystal-chemical study. Neues Jahrb. Mineral. Abh.y 134, 317—36.Google Scholar
Povarennykh, A.S. (1970) Spectres infrarouges de certains mineraux de Madagascar. Bull. Soc. fr. Mineral. Crist., 93, 224—34.Google Scholar
Purgold, A. (1886) Neunte Sitzung am 26. November 1885. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden, Jahrgang 1885 p. 67—9.Google Scholar
Purgold, A. (1887) Berichtigung und Erganzung. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden, Jahrgang 1886y 2pages.Google Scholar
Riciputi, L.R., Valley, J.W. and McGregor, V.R. (1990) Conditions of Archean granulite metamoqjhism in the Godthab-Fiskenaesset region, southern West Greenland. J. Metam. GeoL, 8, 171—90.CrossRefGoogle Scholar
Rotzler, J. (1992) Zur Petrogenese im Sachsischen Granulitgebirge. Die pyroxenfreien Granulite und die Metapelite. Geotekt. Forsch., 77, 1—100.Google Scholar
Rotzler, J., Hagen, B. and Hornes, S. (1995) Evidence for ultra-high temperature/high pressure metamorphism in the Saxonian Granulite Massif, Germany. Metamorphic Studies Group, Mineralogical Society of Great Britain and Ireland and Geological Society of London, Research in Progress and Annual General Meeting, Programme and Abstractsp. 9.Google Scholar
Sauer, A. (1886) Über eine eigenthümliche Granulitart als Muttergestein zweier neuer Mineralspecies. Zeits. Deutschen Geologischert Gesellschaft 38, 704—6.Google Scholar
Scheumann, K.H. (1960) Das Kornerupingestein von Waldheim in seinem genetischen Zusammenhang. Abhandlungen der Sachsischen Akademie der Wissenschaften zu Leipzig, Math.-naturwissen. Klasse, 47(2), 23 pp.Google Scholar
Schmetzer, K., Ottemann, J., Bank, H. and Krupp, J. (1979) Transparent bluish-green kornerupine from East Africa (Kenya and Tanzania). J. Gemmol. 16(7), 455—7.CrossRefGoogle Scholar
Schreyer, W., Abraham, K. and Behr, H. J. (1975) Sapphirine and associated minerals from the kornerupine rock of Waldheim, Saxony. Neues Jahrb. Mineral. Abh., 126, 1—27.Google Scholar
Seifert, F. (1975) Boron-free kornerupine: A high- pressure phase. Amer. J. ScL, 275, 57—87.Google Scholar
Uhlig, J. (1910) Uber Prismatin und Kryptotil von Waldheim in Sachsen. Zeits. Krist. Mineral, 47, 215–30.Google Scholar
Ussing, N.V. (1889) XXXIV. Untersuchungen der Mineralien von Fiskernas in Gronland. Zeits. Krist. Mineral., 15, 596—615.Google Scholar
Waters, D.J. and Moore, J.M. (1985) Kornerupine in Mg-Al-rich gneisses from Namaqualand, South Africa: mineralogy and evidence for late-meta- morphic fluid activity. Contrib. Mineral. PetroL, 91, 369–82.CrossRefGoogle Scholar
Werding, G. and Schreyer, W. (1978) Synthesis and crystal chemistry of kornerupine in the system MgO- Al2O3-SiO2-B2O3-H2O. Contrib. Mineral. Petrol., 67, 247–59.CrossRefGoogle Scholar