Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T12:16:54.245Z Has data issue: false hasContentIssue false

The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral

Published online by Cambridge University Press:  05 July 2018

S. Signorelli
Affiliation:
Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
C. Peroni
Affiliation:
Department of history of Architecture, Restoration and Conservation of Architectural Monuments, University “La Sapienza” Rome, P.za Borghese 9, 00186 Rome, Italy
M. Camaiti
Affiliation:
National Research Council - Centro di Studio sulle, Cause di Deperimento e sui Metodi di Conservazione delle Opere d'Arte - Florence, Via Degli Alfani 74, 50121 Florence, Italy
F. Fratini
Affiliation:
National Research Council - Centro di Studio sulle, Cause di Deperimento e sui Metodi di Conservazione delle Opere d'Arte - Florence, Via Degli Alfani 74, 50121 Florence, Italy

Extract

During the study of some decay processes in marble covering the façade of the Florence Cathedral (1870-1887), vaterite was found as the principal component of some bonding mortars of inlay decorations.

Vaterite is one of the three polymorphous phases of CaCO3 and crystallizes in the hexagonal system, dihexagonal bipyramidal class (Kamhi, 1963; Sato and Matsuda, 1969): it is unstable under normal environmental conditions (Deer et al., 1964).

Type
Short Communications
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, F.A. and Brecevic, L. (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand., 45, 1018—24.CrossRefGoogle Scholar
Cole, V.F. and Kroone, B. (1959) Carbonate minerals in hydrated portland cement. Nature, Brit. Assoc.y B.A., 57 CrossRefGoogle Scholar
Davies, P., Dollimore, D. and Heal, G.R. (1978) Polymorph transition kinetics by DTA. J. Thermal Anal., 13, 473-87.CrossRefGoogle Scholar
Deer, V.A., Howie, R.A. and Zussman, J. (1964) Rockforming Minerals - V. 5, Non-silicates. London, Longman, Green and Co Ltd, 372 pp.Google Scholar
Ducloux, J., Dupuis, T. and Laouina, A. (1987) Influence de gels mineraux et d'argiles sur la cristallogenese du carbonate de calcium a partir des solutions bicarbonatees. Catenay 14, 553—60.CrossRefGoogle Scholar
Friedman, G.M. and Schultz, D.J. (1994) Precipitation of vaterite (CaC03) during oil field drilling. Mineral. Mag., 58, 401-8.CrossRefGoogle Scholar
Kamhi, S.R. (1963) On the structure of vaterite, CaC03. Acta Crystallogr., 16, 770—2.CrossRefGoogle Scholar
Sato, M. and Matsuda, S. (1969) Structure of vaterite and infrared spectra. Z. Kristallogr., 129, 405—10.CrossRefGoogle Scholar
Weir, C.E. and Lippincott, E.R. (1961) Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J. Res. NBS - A Physics and Chemistry, 65A, 3, 173—83.Google Scholar