Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T20:08:58.418Z Has data issue: false hasContentIssue false

Preferred ion diffusion pathways and activation energies for Ag in the crystal structure of stephanite, Ag5SbS4

Published online by Cambridge University Press:  05 July 2018

M. Leitl
Affiliation:
BASF Construction Chemicals GmbH, Dr.-Albert-Frank-Straße 32, D-83308 Trostberg, Germany Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040, Regensburg, Germany
A. Pfitzner
Affiliation:
Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040, Regensburg, Germany
L. Bindi*
Affiliation:
Museo di Storia Naturale, Sezione di Mineralogia, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
*

Abstract

The crystal structure of stephanite fromthe type locality, Freiberg District, Saxony, Germany, was refined in the space group Cmc21, up to a final R index of 0.0427. Unit-cell parameters are: a 7.8329(6) Å, b 12.458(1) Å, c 8.5272(7) Å, V 832.1(1) Å3; Z = 4. The previously reported structural model is confirmed, but a higher-precision refinement was achieved herein by the introduction of thirdorder non-harmonic Gram-Charlier tensors for one Ag atom. In the structure of stephanite, Sb forms isolated SbS3 pyramids, which typically occur in sulphosalts, and Ag occupies sites with coordination ranging fromtriangular to almost tetrahedral. Both the Sb–S and Ag–S bond distances closely match the values commonly observed in the structures of other Ag sulphosalts and sulphides.

The use of non-harmonic parameters for Ag allowed a better description of the electron density related to Ag, which is usually difficult to refine in good ionic conductors. A careful analysis of the energy barriers between the Ag sites defines preferred ion-diffusion pathways within the crystal structure of stephanite. The diffusion of Ag ions occurs preferentially along the sites Ag1 and Ag2, giving rise to two-dimensional nets of Ag atoms in which the ion conduction probably takes place.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, P.J. and Coppens, P. (1974) Extinction within the limit of validity of the Darwin transfer equations. 1. General formalism for primary and secondary extinction and their applications to spherical crystals. Acta Crystallographica A, 30, 129—147.Google Scholar
Bindi, L. and Evain, M. (2007) Gram-Charlier development of the atomic displacement factors into mineral structures: The case of samsonite, Ag4MnSb2S6. American Mineralogist, 92, 886—891.CrossRefGoogle Scholar
Bindi, L., Evain, M. and Menchetti, S. (2006a) Temperature dependence of the silver distribution in the crystal structure of natural pearceite, (Ag,Cu)16(As,Sb)2S11. Acta Crystallographica B, 62, 212—219.Google Scholar
Bindi, L., Evain, M., Pradel, A., Albert, S., Ribes, M. and Menchetti, S. (2006b) Fast ionic conduction character and ionic phase-transitions in disordered crystals: The complex case of the minerals of the pearceite-polybasite group. Physics and Chemistry of Minerals, 33, 677—690.Google Scholar
Bindi, L., Evain, M. and Menchetti, S. (2007) Complex twinning, polytypism and disorder phenomena in the crystal structures of antimonpearceite and arsenpo- lybasite. The Canadian Mineralogist, 45, 321—333.CrossRefGoogle Scholar
Bindi, L., Keutsch, F.N., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chaňarcillo, Chile: Crystal structure, pseudosymmetry twinning, and revised chemical formula. American Mineralogist, 94, 609—615.CrossRefGoogle Scholar
Boucher, F., Evain, M. and Brec, R. (1992) Singlecrystal structure determination of γ-Ag8SiTe6 and powder X-ray study of low-temperature α and β phases. Journal of Solid State Chemistry, 100, 341—355.CrossRefGoogle Scholar
Boucher, F., Evain, M. and Brec, R. (1993) Distribution and ionic diffusion path of silver in γ-Ag8GeTe6: A temperature dependent anharmonic single crystal structure study. Journal of Solid State Chemistry, 107, 332—346.CrossRefGoogle Scholar
Boucher, F., Evain, M. and Brec, R. (1994) Second-order Jahn-Teller effect in CdPS3 and ZnPS3 demonstrated by a non-harmonic behaviour of Cd2+ and Zn2+ d10 ions. Journal of Alloys and Compounds, 215, 63—70.CrossRefGoogle Scholar
Engel, P. and Nowacki, W. (1966) Die Verfeinerung der Kristallstruktur von Proustit, Ag3AsS3, und Pyrargyrit, Ag3SbS3 . Neues Jahrbuch fur Mineralogie Monatshefte, 181—195.Google Scholar
Evain, M., Gaudin, E., Boucher, F., Petříček, V. and Taulelle, F. (1998) Structures and phase transitions of the A7PSe6 (A=Ag,Cu) argyrodite-type ionic conductors. I. Ag7PSe6 . Acta Crystallographica B, 54, 376—383.Google Scholar
Evain, M., Bindi, L. and Menchetti, S. (2006a) Structural complexity in minerals: twinning, poly- typism and disorder in the crystal structure of polybasite, (Ag,Cu)16(Sb,As)2S11 . Acta Crystallographica B, 62, 447—456.Google Scholar
Evain, M., Bindi, L. and Menchetti, S. (2006b) Structure and phase transition in the Se-rich variety of antimonpearceite, (Ag14.67Cu1.20Bi0.01Pb0.01Zn0.01 Fe0.03)15.93(Sb1.86As0.19)2.05(S8.47Se2.55)11.02. Acta Crystallographica B, 62, 768—774.Google Scholar
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy. Eighth Edition. John Wiley & Sons, New York, USA.Google Scholar
Gaudin, E., Fischer, L., Boucher, F., Evain, M. and Petříček, V. (1997) Ag2Ti2P2S11: A new layered thiophosphate. Synthesis, structure determination and temperature dependence of the silver distribution. Acta Crystallographica B, 53, 67—75.Google Scholar
Haile, S.M. and Wuensch, B.J. (2000a) X-ray diffraction study of K3NdSi7O17: a new framework silicate with a linear Si—O—Si bond. Acta Crystallographica B, 56, 773—779.Google Scholar
Haile, S.M. and Wuensch, B.J. (2000b) Structure, phase transitions and ionic conductivity of K3NdSi6O15-xH2O. II. Structure of β-K3NdSi6O15 . Acta Crystallographica B, 56, 349—362.Google Scholar
Haile, S.M. and Wuensch, B.J. (2000c) Structure, phase transitions and ionic conductivity of K3NdSi6O15-xH2O. I. α-K3NdSi6O15-2H2O and its polymorphs. Acta Crystallographica B, 56, 335348.CrossRefGoogle Scholar
Haile, S.M., Wuensch, B.J., Laudise, R.A. and Maier, J. (1997) Structure of Na3NdSi6O15.2H2O — a layered silicate with paths for possible fast-ion conduction Acta Crystallographica B, 53, 7—17.Google Scholar
Herrendorf, W. (1993) Habitus. PhD dissertation, University of Karlsruhe, Germany.Google Scholar
Johnson, C.K. and Levy, H.A. (1974) Pp. 311—336 in: International Tables for X-ray Crystallography, (J.A. Ibers and W.C. Hamilton, editors). Vol. IV, Kynoch Press, Birmingham, UK.Google Scholar
Kuhs, W.F. (1984) Site-symmetry restrictions on thermal-motion-tensor coefficients up to rank 8. Acta Crystallographica A, 40, 133—137.Google Scholar
Kuhs, W.F. and Heger, G. (1979) Pp. 233—236 in: Fast Ion Transport in Solids(P., Vashishta, J.N., Mundy and G.K., Shenoy, editors), Elsevier, Amsterdam.Google Scholar
Leitl, M. (2007) Strukturchemische und impedanzspek- troskopische Untersuchungen an silberionenleiten- den Substanzen, Munzmetallthiophosphaten und Kupferargyroditen. PhD thesis, Universitat Regensburg, Institut fur Anorganische Chemie, 228 pp.Google Scholar
Petříček, V., Duek, M. and Palatinus, L. (2000) JANA2000, a crystallographic computing system. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.Google Scholar
Pfitzner, A. (1998) Disorder of Cu+ in Cu3SbS3: structural investigations of the high- and low- temperature modification. Zeitschrift fur Kristallographie, 213, 228—236.Google Scholar
Pfitzner, A., Evain, M. and Petificek, V. (1997) Cu12Sb4S13: A temperature dependent structure investigation. Acta Crystallographica B, 53, 337—345.Google Scholar
Ribar, B. and Nowacki, W. (1970) Die Kristallstruktur von Stephanit, [ S b S 3 | S | Ag5H]. Acta Crystallographica B, 26, 201—207. Stoe and Cie (1997) X-RED (version 1.09), STOE Data Reduction Program;X-shape (version 1.02), Crystal Optimisation for Numerical Absorption correction, Darmstadt, Germany.Google Scholar
Van der Lee, A., Boucher, F., Evain, M. and Brec, R. (1993) Temperature dependence of the silver distribution in Ag2MnP2S6 by single crystal X-ray diffraction. Zeitschrift fur Kristallographie,, 203, 247—264.Google Scholar
Zucker, U.H. and Schulz, H. (1982) Statistical approaches for the treatment of anharmonic motion in crystals. I. A comparison of the most frequently used formalisms of anharmonic thermal vibrations. Acta Crystallographica A, 38, 563—568.Google Scholar
Supplementary material: File

Leitl et al. supplementary material

Cif file

Download Leitl et al. supplementary material(File)
File 18.7 KB
Supplementary material: File

Leitl et al. supplementary material

Table 5

Download Leitl et al. supplementary material(File)
File 23.8 KB