Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T07:25:14.131Z Has data issue: false hasContentIssue false

The Piteiras emerald mine, Minas Gerais, Brazil: fluid-inclusion and gemmological perspectives

Published online by Cambridge University Press:  05 July 2018

E. P. Lynch
Affiliation:
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland Mineral Resources Division, Box 670, 751 28, Geological Survey of Sweden, Uppsala, Sweden
A. Costanzo*
Affiliation:
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
M. Feely
Affiliation:
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
N. J. F. Blamey
Affiliation:
Department of Earth & Environmental Science, 801 Leroy Place, New Mexico Tech, Socorro, NM 87801, New Mexico USA
J. Pironon
Affiliation:
UMR G2R, CREGU, Université Nancy I, B.P. 23, 54501 Vandoeuvre-lés-Nancy, France
P. Lavin
Affiliation:
Jewellery Valuations Ireland, Pound Street, Ballaghaderreen, Co. Roscommon, Ireland
*

Abstract

New fluid inclusion analyses using a range of analytical techniques including quadropole mass spectrometric analyses coupled with gemmological investigations were conducted on rough and gemquality faceted emeralds from the Piteiras Mine, Minas Gerais, Brazil. These data complement those of Rondeau et al. (2003) who also presented analyses of the Piteiras emeralds. Emeralds are found typically as euhedral-to-anhedral crystals disseminated in biotite-phlogopite schist and range from 0.5 to 50 mm long. Emerald mineralization is associated closely with alkaline metasomatized pegmatite bodies, quartz boudin and veins, and talc-chlorite bands. Four types of fluid inclusions are recognized in the emeralds. These include aqueous brine and aqueous carbonic varieties containing one or two liquid phases, along with gas bubbles and/or solid crystals (e.g. carbonates). Primary fluid inclusions in emeralds record salinities of ~4–24 eq. wt.% NaCl and minimum trapping temperatures from ~350 to 480ºC. Combined microthermometry, Raman spectroscopy and crush-leach gas analyses indicate that the mineralizing fluid was an aqueous carbonic brine enriched in reduced volatile species such as CH4, N2, H2S and alkanes. With respect to their optical properties (RI ε = 1.573–1.580; RI ω = 1.580–1.588; birefringence = 0.006–0.008) and specific gravity (2.65–2.78), the Piteiras emeralds fall within the expected range for metasomatic, schist-hosted emeralds.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkmim, F.F. and Marshak, S. (1998) Transamazonian orogeny in the southern Sa˜o Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research, 90, 2958.CrossRefGoogle Scholar
Alkmim, F.F., Marshak, S. and Fonseca, M.A. (2001) Assembling west Gondwana in the Neoproterozoic: Clues from the Sa˜o Francisco craton region, Brazil. Geology, 29, 319322.2.0.CO;2>CrossRefGoogle Scholar
Bakker, R.J. (1997) Clathrates: computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23, 118.CrossRefGoogle Scholar
Bakker, R.J. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194, 323.CrossRefGoogle Scholar
Barton, M.D. and Young, S. (2002) Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. Pp. 591691. in: Beryllium: Mineralogy, Petrology, and Geochemistry (E.S. Grew, editor). Reviews in Mineralogy & Geochemistry, 50. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Blamey, N.J.F. (2012) Composition and evolution of crustal, geothermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis, Journal of Geochemical Exploration, 116–117. 1727.CrossRefGoogle Scholar
Bodnar, R. (2003) Re-equilibrium of fluid inclusions. Pp. 953. in: Fluid Inclusions: Analysis and Interpretation (I. Samson, A. Anderson, D. Marshall, editors). Mineralogical Association of Canada Short Course Handbook, Vol. 32. Mineralogical Association of Canada, Quebec, Canada.Google Scholar
Chemale, F. Jr., , Quade, H. and Van Schmus, W.R. (1998) Petrography, geochemistry, and geochronology of the Borrachudo and Santa Bárbara metagranites Quadrilátero Ferrífero, Brazil. Zentralblatt für Geologie und Paläontologie Teil I, 3, 739750.Google Scholar
Correia Neves, J.M., Pedrosa Scares, A.C. and Marciano V.R.P.R.O. (1986) A província pegmatítica oriental do Brasil a` luz dos conhecimentos atuais. Revista Brasileira de Geociências, 16, 106118.CrossRefGoogle Scholar
Cunha, O.L. (1961) Esmeralda da Fazenda do Sossego, Santana dos Ferro, Minas Gerais, Brazil. Gemologia VII, 914.Google Scholar
Dardenne, M.A. and Schobbenhaus, C. (2001) Mineral Deposits of Brazil: Distribution in Time, Provinces and Metallogenic Epochs. Pp. 365448. in: Geologia, Tectônica e Recursos Minerais do Brasil (Bizzi, L.A., Schobbenhaus, C., Vidotti, R.M. and J.H. Gonc¸alves, editors). CPRM Report, 3. Geological Survey of Brazil, Brasilia.Google Scholar
de Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B. and Fuck, R.A. (1981) Brazilian structural provinces: an introduction. Earth Science Reviews, 17, 129.CrossRefGoogle Scholar
de Brito Neves, B.B., da Costa Campos Neto, M. and Fuck, R.A. (1999) From Rodinia to western Gondwana: An approach to the Brasiliano-Pan African Cycle and orogenic collage. Episodes, 22, 155166.CrossRefGoogle Scholar
Epstein, D.S. (1989) The Capoeirana emerald deposit near Nova Era, Minas Gerais, Brazil. Gems & Gemology, 25, 150158.CrossRefGoogle Scholar
Fernandes, M.L.S, Marciano, V.R.P.R.O., de Oliviera, R.C., Correia Neves, J.M. and Dilascio M.V. (1994) Granitos Borrachudos: um exemplo de granitognese anorognica na porc¸a˜o central do estado de Minas Gerais. Geonomos, 2, 2329.Google Scholar
Gavrilernko, E.V., Calvo Pérez, B., Castroviejo Bolibar, R. and García Del Amo, D. (2006) Emeralds from the Delbegetey deposit (Kazakhstan): mineralogical characteristics and fluid-inclusion study. Mineralogical Magazine, 70, 159173.CrossRefGoogle Scholar
Giuliani, G., Silva, L.J.H.D. and Couto, P. (1990) Origin of emerald deposits of Brazil. Mineralium Deposita, 25, 5764.CrossRefGoogle Scholar
Giuliani, G., France-Lanord, C., Zimmermann, J.L., Cheilletz, A., Arboleda, C., Charoy., B., Coget, P., Fontan, F. and Giard, D. (1997) Fluid composition, dD of channel H2O, and d18O of lattice oxygen in beryls: genetic implications for Brazilian, Colombian, and Afghanistani emerald deposits. International Geology Reviews, 39, 400424.CrossRefGoogle Scholar
Groat, L.A., Giuliani, G., Marshall, D.D. and Turner, D. (2008) Emerald deposits and occurrences: a review. Ore Geology Reviews, 34, 87112.CrossRefGoogle Scholar
Grundmann, G. and Morteani, G. (1989) Emerald mineralization during regional metamorphism: the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Economic Geology, 84, 18351849.CrossRefGoogle Scholar
Hänni, H.A., Schwarz, D. and Fischer, M. (1987) The emeralds of the Belmont Mine, Mine Gerais, Brazil. Journal of Gemmology, 20, 446456.CrossRefGoogle Scholar
Just, E. (1926) Emeralds at Bom Jesus dos Meiras, Bahia. Economic Geology, 21, 808810.CrossRefGoogle Scholar
Kanis, J. (2001) Gem news international: First production of emeralds from Piteiras, Brazil. Gems & Gemology, 37, 6869.Google Scholar
Kanis, J. (2002) Piteiras, Brasilien: Smaragdsuche mit modernsten Methoden. Lapis, 27, 1318.Google Scholar
Lobato, L.M., Ribeiro-Rodrigues, L.C., Zucchetti, M., Noce, C., Baltazar, O. Da Silva, L. and Pinto, C. (2001) Brazil’s premier gold province. Part I: The tectonic, magmatic and structural setting of the Archean Rio das Velhas greenstone belt, Quadriláto Ferrífero. Mineralium Deposita, 36, 228248.CrossRefGoogle Scholar
MacDonald, A.J. and Spooner, E.T.C. (1981) Calibration of a Linkam TH 600 programmable heating-cooling stage for microthermometric examination of fluid inclusions. Economic Geology, 74, 12491258.Google Scholar
Machado, I.F. and Figueirôa, S.F. de M. (2001) 500 years of mining in Brazil: a brief review. Resources Policy, 27, 924.CrossRefGoogle Scholar
Morteani, G., Preinfalk, C. and Horn, A.H. (2000) Classification and mineralization potential of the pegmatites of the Eastern Brazilian Pegmatite Province. Mineralium Deposita, 35, 638655.CrossRefGoogle Scholar
Norman, D.I. and Blamey, N.J.F. (2001) Quantitative analysis of fluid inclusion volatiles by a two quadrupole mass spectrometer system. Pp. 341344. in: ECROFI (European Current Research on Fluid Inclusions), XVI. Elsevier, Amsterdam.Google Scholar
Norman, D.I. and Moore, J.N. (1999) Methane and excess N2 and Ar in geothermal fluid inclusions. Pp. 233240. in: Proceedings, Twenty-Fourth Workshop of Geothermal Reservoir Engineering, Stanford University. Stanford, California, USA.Google Scholar
Norman, D.I. and Musgrave, J.A. (1994) N2-Ar-He compositions in fluid inclusions: Indicators of fluid source. Geochimica et Cosmochimica Acta, 58, 11191131.CrossRefGoogle Scholar
Pedrosa-Soares, A.C., Pinto, C.P., Netto, C., Araujo, M.C., Castan˜eda, C., Achtschin, A.B. and Basílio, M.S. (2001) A província gemolόgica oriental do Brasil. Pp. 1633. in: Gemas de Minas Gerais. Belo Horizonte (C. Castan˜ eda, Addad, J.E. and Liccardo, A., editors) Sociedade Brasileira de Geologia, Sa˜o Paulo, Brasil.Google Scholar
Pinto, C.P. and Pedrosa-Soares, A.C. (2001) Brazilian gem provinces. Australian Gemmologist, 21, 216.Google Scholar
Preinfalk, Y., Kostitsyn, Y. and Morteani, G. (2002) The pegmatites of the Nova Era-Itabira-Ferros pegmatite district and the emerald mineralisation of Capoeirana and Belmont (Minas Gerais, Brazil): Geochemistry and Rb-Sr dating. Journal of South American Earth Sciences, 14, 867887.CrossRefGoogle Scholar
Ribeiro-Althoff, A.M., Cheilletz, A. and Giuliani, G. (1997) 40Ar/39Ar and K-Ar geochronological evidence for two periods (~2 Ga and 650 to 500 Ma) of emerald formation in Brazil. International Geology Reviews, 39, 924937.CrossRefGoogle Scholar
Rondeau, B., Notari, F., Giuliani, G., Michelou, J.-C., Martins, S., Fritsch, E. and Respinger, A. (2003) La mine de Piteiras, Minas Gerais, nouvelle source d’émeraude de belle qualité au Brésil. Reveu de Gemmologie, 147, 118.Google Scholar
Rossman, G.R. (2009) The geochemistry of gems and its relevance to gemology: different traces, different prices. Elements, 5, 159162.CrossRefGoogle Scholar
Schmetzer, K., Bernhardt, H.-J., Dunaigre, C. and Krzemnicki, M. (2007) Vanadium-bearing gemquality tourmalines from Madagascar. Journal of Gemmology, 30, 413433.CrossRefGoogle Scholar
Schorscher, J.H.D. (1992) Quadrilátero Ferrífero e Espinhac¸o meridional. Roteiros das excurso˜es do 37º Congresso Brasileiro de Geologica, 9. Sa˜o Paulo, Brasil, 39 pp.Google Scholar
Schwarz, D. (1987) Esmeralda –Incluso˜es em Gemas. Imprensa Universitária, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 439 pp.Google Scholar
Schwarz, D. and Giuliani G. (2001) Emerald deposits – a review. Australian Gemmologist, 21, 1723.Google Scholar
Schwarz, D. and Giuliani, G. (2002) South America: Colombia. ExtraLapis English 2, 3645.Google Scholar
Souza, J.L. (1990) Mineralogia e geologia de esmeralda da jazida de Itabira, Minas Gerais. Revista Escola de Minas, 43, 3150.Google Scholar
Souza, J.L., Mendes, J.C., Silveira Bello, R.M., Svisero, D.P. and Valarelli, J.V. (1992) Petrographic and microthermometrical studies of emeralds in the garimpo of Capoeirana, Nova Era, Minas Gerais State, Brazil. Mineral Deposita, 27, 161168.CrossRefGoogle Scholar
Vapnik, Ye., Sabot, B. and Moroz I. (2005) Fluid inclusions in Ianapera emerald, southern Madagascar. International Geology Review, 47, 647662.CrossRefGoogle Scholar
Viana, R.R., Mänttäri, I., Kunst, Henjes and Jordt- Evangelista, H. (2003) Age of pegmatites from eastern Brazil and implications of mica intergrowths on cooling rates and age calculations. Journal of South American Earth Sciences, 16, 493501.CrossRefGoogle Scholar
Yager, T.R., Menzie, W.D. and Olsen, D. (2008) Weight of production of emeralds, rubies, sapphires, and tanzanite from 1995 through 2005. US Geological Survey, Open File Report 2008–1013. US Geological Survey, Reston, Virginia, USA, 9 pp.Google Scholar
Zwaan, J.C. (2001) Preliminary study of emeralds from the Piteiras Emerald mine, Minas Gerais, Brazil. Pp. 106109. in: 28th International Gemmological Conference, Extended Abstracts. Madrid.Google Scholar