Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T21:02:36.710Z Has data issue: false hasContentIssue false

Phase transitions in silicate perovskites from first principles

Published online by Cambridge University Press:  05 July 2018

Michele C. Warren
Affiliation:
Department of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
Graeme J. Ackland
Affiliation:
Department of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
Bijaya B. Karki
Affiliation:
Department of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
Stewart J. Clark
Affiliation:
Department of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

Abstract

The equilibrium structures of cubic, tetragonal and orthorhombic phases of magnesium silicate perovskite are found from first principles electronic structure calculations. Zone centre and zone boundary phonons of each phase are also calculated from ab initio forces from finite displacments, and phase transitions between the phases are analysed in terms of phonon instabilities, and coupling between modes. Both the cubic and tetragonal phases have strongly unstable modes dominated by rotation of the SiO6 octahedra, which freeze in to ultimately form the orthorhombic phase. First priniciples molecular dynamics simulations at finite temperatures are used to further investigate the stability of the intermediate tetragonal phase and the coupling between participating phonon modes. The implications for a transition temperature between orthorhombic and tetragonal phases are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ UK

References

Ackland, G., Warren, M. and Clark, S. (1997) Practical methods in ab initio lattice dynamics, J. Phys.: Cond. Mat., 9, 7861–72.Google Scholar
Bukowinski, M. and Wolf, G. (1988) Equation of state and possible critical phase transitions in MgSiO3 perovskite at lower-mantle conditions. In: Structural and Magnetic Phase Transitions in Minerals, (Ghose, S., Coey, J. and Salje, E., eds.). Springer-Verlag, New York, pp. 91112.CrossRefGoogle Scholar
Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55, 2471–4.CrossRefGoogle ScholarPubMed
Catlow, C. and Price, G. (1990) Computer modelling of solid-state inorgaic materials. Nature, 347, 243–8.CrossRefGoogle Scholar
Clark, S. and Ackland, G. (1997) Ab initio calculations of the self-interstitial in silicon. Phys. Rev., B56, 4750.CrossRefGoogle Scholar
Clarke, L., Stich, I. and Payne, M. (1992) Large-scale ab initio total energy calculations on parallel computers. Comp. Phys. Comms., 72, 1428.CrossRefGoogle Scholar
Cohen, R. and Krakauer, H. (1990) Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented- plane-wave total-energy calculations. Phys. Rev., B42, 6416–23.CrossRefGoogle Scholar
Francis, G. and Payne, M. (1990) Finite basis set corrections to total energy pseudopotential calculations. J. Phys.. Cond. Mat., 2, 4395–404.CrossRefGoogle Scholar
Giddy, A., Dove, M., Pawley, G. and Heine, V. (1993) The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta. Cryst., A49, 697703.CrossRefGoogle Scholar
Hemley, R. and Cohen, R. (1992) Silicate perovskite. Ann. Rev. Earth Planet. Sci., 20, 553600.CrossRefGoogle Scholar
Hemley, R., Jackson, M. and Gordon, R. (1987) Theoretical study of the structure, lattice dynamics, and equations of state of perovskite-type MgSiO3 and CaSiO3 . Phys. Chem. Minerals, 14, 212.CrossRefGoogle Scholar
Hsueh, H., Warren, M., Vass, H., Ackland, G., Clark, S. and Crain, J. (1996) Vibrational properties of the layered semiconductor germanium sulfide under hydrostatic pressure. Phys. Rev., B53, 14806–17.CrossRefGoogle Scholar
Karki, B., Stixrude, L., Clark, S., Warren, M., Ackland, G. and Crain, J. (1997) Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures. Amer. Mineral., 82, 635–8.CrossRefGoogle Scholar
Kerker, G. (1980) Non-singular atomic pseudopotentials for solid-state applications. J. Phys., C13, L189–94.Google Scholar
King-Smith, R. and Vanderbilt, D. (1994) Firstprinciples investigation of ferroelectricity in perovskite compounds. Phys. Rev., B49, 5828–44.CrossRefGoogle Scholar
Kleinman, L. and Bylander, D. (1982) Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48, 1425–8.CrossRefGoogle Scholar
Lines, M. and Glass, A. (1977) Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford.Google Scholar
Mao, H., Hemley, R., Fei, Y., Shu, J., Chen, L., Jephcoat, A., Wu, Y. and Bassett, W. (1991) Effect of pressure, temperature and composition on lattice parameter and density of (Fe,Mg)SiO3–perovskites to 30 GPa. J. Geophys. Res., 96, 8069–79.CrossRefGoogle Scholar
Matsui, M. (1988) Molecular dynamics study of MgSiO3 perovskite. Phys. Chem. Miner., 16, 234–8.CrossRefGoogle Scholar
Navrotsky, A. and Weidner, D. (eds) (1989) Perovskite. A Structure of Great lnterest to Geophysics and Materials Science. American Geophysical Union.CrossRefGoogle Scholar
Oguchi, T. and Sasaki, T. (1991)Density-functional molecular-dynamics method. Prog. Theor Phys., Supp. 103, 93117.CrossRefGoogle Scholar
Payne, M., Teter, M., Allan, D., Arias, T. and Joannopoulos, J. (1992) Iterative minimisation techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045–97.CrossRefGoogle Scholar
Postnikov, A., Neumann, T. and Borstel, G. (1994) Phonon properties of KNbO3 and KTaO3 from firstprinciples calculations. Phys. Rev., BS0, 758–63.CrossRefGoogle Scholar
Rabe, K. and Waghmare, U. (1996) Ferroelectric phas-transitions from first principles. J. Phys. Chem. Solids, 57, 1397–403.CrossRefGoogle Scholar
Ross, N. and Hazen, R. (1990) High-pressure crystal chemistry of MgSiO3 perovskite. Phys. Chem. Miner., 17, 228–37.CrossRefGoogle Scholar
Stixrude, L. and Cohen, R. (1993) Stability of orthorhombic MgSiO3 perovskite in the earth's lower mantle. Nature, 364, 613–6.CrossRefGoogle Scholar
Stixrude, L., Cohen, R., Yu, R. and Krakauer, H. (1996) Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Amer. Mineral., 81, 1293–6.Google Scholar
Wang, Y., Guyot, F. and Liebermann, R. (1992)Electron microscopy of (Mg,Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. J. Geophys. Res., 97, 12327–47.CrossRefGoogle Scholar
Wang, Y., Weidner, D. and Guyot, F. (1996) Thermal equation of state of CaSiO3 perovskite. J. Geophys. Res., 101, 661–72.CrossRefGoogle Scholar
Warren, M. and Ackland, G. (1996) Ab initio studies of structural instabilities in magnesium silicate perovskite. Phys. Chem. Miner., 23, 107–18.CrossRefGoogle Scholar
Wentzcovitch, R., Martins, J. and Price, G. (1993) Ab initio molecular dynamics with variable cell shape: Application to MgSiO3 . Phys. Rev. Lett., 70, 3947–50.CrossRefGoogle ScholarPubMed
Wentzcovitch, R., Ross, N. and Price, G. (1995) Abinitio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Phys. Earth. Planet. lnt., 90, 101–12.CrossRefGoogle Scholar