Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:17:14.561Z Has data issue: false hasContentIssue false

The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas

Published online by Cambridge University Press:  05 July 2018

X. Mo
Affiliation:
Lawrence Berkeley Laboratory, Department of Geology and Geophysics, University of California, Berkeley, California 94720 USA
I. S. E. Carmichael
Affiliation:
Lawrence Berkeley Laboratory, Department of Geology and Geophysics, University of California, Berkeley, California 94720 USA
M. Rivers
Affiliation:
Lawrence Berkeley Laboratory, Department of Geology and Geophysics, University of California, Berkeley, California 94720 USA
J. Stebbins
Affiliation:
Lawrence Berkeley Laboratory, Department of Geology and Geophysics, University of California, Berkeley, California 94720 USA

Abstract

Density measurements of eight silicate liquids containing substantial amounts of Fe2O3 have been made over a range of 250 °C. These have been combined with published density measurements on multicomponent silicate liquids to yield (by multiple regression) partial molar volumes of SiO2, TiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, and K2O. The data on Fe2O3-liquids are neither precise nor abundant enough to show a compositional dependence of . In a liquid of constant composition and temperature, the pressure dependence of the oxygen fugacity is given by

which, if ΔV is independent of pressure, necessitates an increase in fO2 with increasing pressure of about 1 log10 unit for 10 kbars.

Combining an equation relating oxygen fugacity to composition, T, and Fe2O3 at 1 bar (Sack et al., 1980) with the results for partial molar volumes, the oxygen fugacity of any magma can be calculated as a function of P and T. If basic magmas have their Fe2O3/FeO set in the source regions, and ascend isochemically, then the calculated oxygen fugacities in the mantle increase as pressure increases and silica activity decreases. A P-T grid has been constructed to show the calculated oxygen fugacities in a source region which has equilibrated with some common lava types, based on their FeO and Fe2O3 contents.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Permanent address: Beijing College of Geology, Beijing, China.

References

Aksay, I. A., and Pask, J. A. (1979) J. Am. Ceram. Soc. 62, 332-6.CrossRefGoogle Scholar
Arculus, R. J., and Delano, J. W. (1981) Geochim. Cosmochim. Acta, 45, 899-913.CrossRefGoogle Scholar
Barrett, L. R., and Thomas, A. G. (1959) Soc. Glass Tech. J. 43, 179-90T.Google Scholar
Bockris, J. O'M, Tomlinson, J. W., and White, J. L. (1956) Faraday Soc. Trans. 52, 299-310.CrossRefGoogle Scholar
Bottinga, Y., and Weill, D. F. (1970) Am. J. Sci. 269, 169-82.CrossRefGoogle Scholar
Brown, G. M., Pinsent, R. H., and Coisy, P. (1980) Ibid. 280A, 471-88.Google Scholar
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. (1974) Igneous petrology. McGraw-Hill. 739 pp.Google Scholar
Clark, S. P. Jr., (1966) Handbook of physical constants. Geol. Soc. Am. Mem. 97, 587 pp.Google Scholar
Denbigh, K. (1971) The principles of chemical equilibrium (3rd edn.). Cambridge Univ. Press. 494 pp.Google Scholar
Edwards, J. W., Speiser, R., and Johnston, L. (1951) J. Appl. Phys. 22, 424-8.CrossRefGoogle Scholar
Henderson, J. (1964) Am. Inst. Min. Engr., Metall. Soc. Trans. 20, 501-4.Google Scholar
Hewitt, D. A. (1976) Trans. Am. Geophys. Un. 57, 1020.Google Scholar
Ghiorso, M. S., and Carmichael, I. S. E. (1980) Contrib. Mineral. Petrol. 71, 323-42.CrossRefGoogle Scholar
Gray, D. E. (1972) Americal Institute of physics handbook. McGraw-Hill. 2351 pp.Google Scholar
Kennedy, G. C. (1948) Am. J. Sci. 246, 529-49.CrossRefGoogle Scholar
Lee, Y. E., and Gaskell, D. R. (1974) Met. Trans. 5, 853-60.CrossRefGoogle Scholar
Mysen, B. O., Seifert, F., and Virgo, D. (1980) Am. Mineral. 65, 867-84.Google Scholar
Nelson, S. A., and Carmichael, I. S. E. (1979) Contrib. Mineral. Petrol. 71, 117-24.CrossRefGoogle Scholar
Riebling, E. F. (1964) Can. J. Chem. 42, 2811-21.CrossRefGoogle Scholar
Riebling, E. F. (1966) J. Chem. Phys. 44, 2857-65.CrossRefGoogle Scholar
Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) U.S.G.S. Bull. 1452, 456 pp.Google Scholar
Sack, R. O. (1982) Spinels as petrogenetic indicators. Activity-composition relations at low pressure. (In press.)CrossRefGoogle Scholar
Sack, R. O., Carmichael, I. S. E., Rivers, M., and Ghiorso, M. S. (1980) Contrib. Mineral. Petrol. 75, 369-76.CrossRefGoogle Scholar
Sato, M. (1978) Geophys. Res. Lett. 5, 447-9.CrossRefGoogle Scholar
Sharma, S. K., Virgo, D., and Mysen, B. O. (1979) Am. Mineral. 64, 77987.Google Scholar
Shartsis, L., Spinners, S., and Capps, W. (1952) Am. Ceram. Soc. Bull. 35, 155-60.CrossRefGoogle Scholar
Shiraishi, Y., Ikeda, K., Tamura, A., and Saito, T. (1978) Trans. Jap. Inst. Metal. 19, 264-74.CrossRefGoogle Scholar
Tomlinson, J. W., Heines, M. S. R., and Bockris, J. O'M. (1958) Faraday Soc. Trans. 54, 1822-33.CrossRefGoogle Scholar
Touloukian, Y. S. (1967) Thermophysical properties of high temperature solid materials (Vol. 4). The Macmillan Comp., N.Y. 1877 pp.Google Scholar
Waseda, Y., Hirata, K., and Ohtahni, M. (1975) High Temp. High Press. 7, 211-26.Google Scholar
Wilson, A. D. (1960) Analyst, 85, 923-7.Google Scholar