Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T08:10:58.805Z Has data issue: false hasContentIssue false

Palagonites of the Red Sea: a new occurrence of hydroxysulphate

Published online by Cambridge University Press:  05 July 2018

E. Ramanaidou
Affiliation:
Laboratoire de Pétrologie de la Surface, U.A. CNRS 721, 41 Avenue Recteur Pineau, 86022 Poitiers Cédex, France
Y. Noack
Affiliation:
Laboratoire de Pétrologie de la Surface, U.A. CNRS 721, 41 Avenue Recteur Pineau, 86022 Poitiers Cédex, France

Abstract

Palagonites from the Red Sea consist of two zones: an orange palagonite which is a mixture of Mg-Al double hydroxide, Al-hydroxide and an undetermined Si-K phase, and a white palagonite, similar to motukoreaite, a Mg-Al hydroxy-sulphate-carbonate. This mineral, frequent in experimental alteration of glass by seawater, is discovered for the first time in natural palagonite. Hydroxysulphates and hydroxides are the precursors of phyllosilicates, generally found in palagonites. The very young palagonites of the Red Sea are the first link between the natural and experimental observations.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Lab. de Geologie Dynamique et Petrologie de la Surface, Université Aix Marseille III, F-13397 Marseille Cedex 13, France.

References

Bernardelli, A., Melfi, A. J. Oliveira, S.M. B., and Trescases, J.J. (1983) The Carajas nickel deposits. (Melfl, A.J., and Carvalho, A, eds.) Pror II Intern. Seminar on Lateritisation Processes. Silo Paulo, Brazil, 107-18.Google Scholar
Bish, D.L., and Livingstone, A. (1981) Mineral. Mag., 44, 339-43.CrossRefGoogle Scholar
Brindley, G.W. (1979) Ibid. 43, 337-40.Google Scholar
Crovisier, J.L., Thomassin, J.H., Juteau, T., Eberhart, J.P., Touray, J.C., and Baillif, P. (1983) Geochim. Cosmochim. Acta,, 47, 377-87.CrossRefGoogle Scholar
Eggleton, R.A., and Keller, J. (1982) Neues Jahrb. Mineral. Mh. 321-36.Google Scholar
Eissen, J.P. (1982) Pdtrologie comparbe de basaltes des différents segments de zones d'accr∼tion ocbaniques h taux d'accrétion varibs (Mer Rouge, Atlantique, Paz∼ifique). Thèse 3e cycle, Universit+ de Strasbourg, 202 pp.Google Scholar
Hay, R.L., and Iijima, A. (1968) Geol. Soc. Am. Mem., 118, 338-76.Google Scholar
Honnorez, J. (1972) La palagonitisation: Faltération sousmarine du verre volcanique basique de Palagonia (Sicile). Publ. Vulkaninstitut Immanuel Friedlaender, 9, Birkhafiser Verlag Basel, 131 pp.Google Scholar
Hudson, D.R., and Bussel, M. (1981) Mineral. Ma9., 44, 345-50.CrossRefGoogle Scholar
Mascolo, G., and Marino, O. (1980) Ibid. 43, 619-21.Google Scholar
Mumpton, F.A., and Thompson, C.S. (1975) Clays Clay Minerals,, 23, 131-43.CrossRefGoogle Scholar
Nickel, E.H., and Clarke, R.M. (1976) Am. Mineral., 61, 366-72.Google Scholar
Nickel, E.H., and Clarke, R.M. and Wildman, J.E. (1981) Mineral. Mag., 44, 333-7.CrossRefGoogle Scholar
Noack, Y. (1979) Altkration sous-marine des verres volcaniques basiques; essai sur la palagonitisation. Thése 3e cycle, Universite de Strasbouro, 95 pp.Google Scholar
Noack, Y. (1981) Bull. Minkral., 104, 36-46.CrossRefGoogle Scholar
Nahon, D. (1982) C.R. Acad. Sc. Paris,, 295, série II, 1129-34.Google Scholar
Rodgers, K.A., Chisholm, J.E., Davis, R.J., and Nelson, C.S. (1977) Mineral. Mag., 41, 389-90.CrossRefGoogle Scholar
Schmitz, W., Singer, A., B/icker, M., Stoffers, P. (1982) Marine Geol., 46, M17-26.CrossRefGoogle Scholar
Thomassin, J.H. (1984) Etude expdrimentale de l'altdration des verres silicates dans l'eau douce et en milieu ocdanique. Apport des méthodes d'analyse de surface des solides. Thése Doctorat d'Etat, Orléans, 215 pp.Google Scholar
Tournarie, M. (1969) J. Phys., 10, 737-51.CrossRefGoogle Scholar