Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:45:29.975Z Has data issue: false hasContentIssue false

Oxy-dravite from Wołowa Góra Mountain, Karkonosze massif, SW Poland: Crystallochemical and structural studies

Published online by Cambridge University Press:  28 February 2018

Adam Pieczka*
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
Andreas Ertl
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Wien, Austria Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
Mateusz P. Sęk
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
Diana Twardak
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
Sylwia Zelek
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
Eligiusz Szełęg
Affiliation:
University of Silesia, Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, 41-200 Sosnowiec, Będzińska 60, Poland
Gerald Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
*

Abstract

Yellowish dravitic tourmaline (dominated by the oxy-dravite component) associated with secondary fluor-dravite/fluor-schorl and dravite/schorl tourmalines was found in a quartz vein cropping out in the eastern part of the Karkonosze Mountains range, SW Poland. The crystal structure of this tourmaline was refined to an R1 value of 1.85% based on single-crystal data, and the chemical composition was determined by electron-microprobe analysis. The tourmaline, a representative of the alkali-tourmaline group, has the structural formula: (Na0.75Ca0.120.13)Σ1(Mg1.93Al0.95Ti0.06${\rm Fe}_{{\rm 0}{\rm. 04}}^{{\rm 2 +}} $ V0.01)Σ3(Al5.38Mg0.62)Σ6B3Si6O27(OH)3(O0.46OH0.33F0.21)Σ1, and is characterized by an extremely high Mg/(Mg + Fe) ratio of 0.97–0.99, the WO2– content that reaches 0.59 apfu resulting in a local predominance of the oxy-dravitic component and Mg–Al disorder on the octahedral Y and Z sites of the order of 0.64 apfu. This disordering results in an increasing <Z–O> distance with ~1.925 Å, and unit-cell parameters a = 15.916(1) Å and c = 7.180(1) Å. The tourmaline formed during Variscan prograde metamorphism under the influence of a released (H2O,B,F)-bearing fluid. The fluid mobilized the most soluble components of partly altered silicic volcaniclastic material of the Late Cambrian to Early Ordovician bimodal volcanism to become the protolith for adjacent quartzo-feldspathic schists and amphibolites, and propagated them into the surrounding granitic gneisses of the Kowary unit in the eastern metamorphic cover of the Karkonosze granite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Mark Welch

References

Bačík, P., Méres, Š. and Uher, P. (2011) Vanadium-bearing tourmaline in metacherts from Chvojnica, Slovak Republic: crystal chemistry and multistage evolution. The Canadian Mineralogist, 49, 195206.Google Scholar
Baksheev, I.A., Prokofev, V.Yu., Yapaskurt, V.O., Vigasina, M.F., Zorina, L.D. and Solovev, V.N. (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. The Canadian Mineralogist, 49, 263276.Google Scholar
Berg, G. (1923) Die Gesteine des Isergebirges. Jahrbuch der Preussischen Geologischen Landes-Anstalt, Berlin, 43, 125168.Google Scholar
Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. The Canadian Mineralogist, 49, 1727.Google Scholar
Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl–dravite series. European Journal of Mineralogy, 16, 335344.Google Scholar
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 10541063.Google Scholar
Bosi, F. and Skogby, H. (2012) Oxy-dravite, IMA 2012-004a. CNMNC Newsletter No. 14, October 2012, page 1285; Mineralogical Magazine, 76, 12811288.Google Scholar
Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 14421448.Google Scholar
Bosi, F., Reznitskii, L. and Skogby, H. (2012) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 20242030.Google Scholar
Bosi, F., Reznitskii, L.Z and Sklyarov, E.V. (2013 a) Oxy-vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O, crystal structure and redefinition of the “vanadium-dravite” tourmaline. American Mineralogist, 98, 501505.Google Scholar
Bosi, F., Skogby, H., Hålenius, U. and Reznitskii, L. (2013 b) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chromium-dravite and oxy-dravite. American Mineralogist, 98, 15571564.Google Scholar
Bosi, F., Reznitskii, L., Skogby, H. and Hallenius, U. (2014 a) Vanadio-oxy-chromium-dravite, NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 11551162.Google Scholar
Bosi, F., Skogby, H., Reznitskii, L. and Hallenius, U. (2014 b) Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 218224.Google Scholar
Bosi, F., Reznitskii, L., Hålenius, U. and Skogby, H. (2017) Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia. European Journal of Mineralogy, https//doi.org/10.1127/ejm/2017/0029-2617Google Scholar
Cempírek, J., Houzar, S., Novák, M., Groat, L.A., Selway, J.B. and Šrein, V. (2013) Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czecgh Republic. Journal of Geosciences, 58, 149162.Google Scholar
Čopjakova, R., Škoda, R. and Vašinová-Galiova, M. (2012) “Oxy-dravite” from tourmalinites of the Krkonoše-Jizera Crystalline Massif. Bulletin Mineralogicko-Petrologického Oddělení Národního Muzea (Praha), 20, 3746.Google Scholar
da Fonseca-Zang, W.A., Zang, J.W. and Hofmeister, W. (2008) The Ti-influence on the tourmaline colour. Journal of the Brazilian Chemical Society, 19, 11861192.Google Scholar
Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.-P., Ntaflos, T., Luvizotto, G.L., Nasdala, L. and Tillmanns, E. (2010) Metamorphic ultra high-pressure tourmalines: Structure, chemistry, and correlations to PT conditions. American Mineralogist, 95, 110.Google Scholar
Ertl, A., Baksheev, I.A., Giester, G., Lengauer, C.L., Prokofiev, V.Y. and Zorina, L.D. (2016) Bosiite, Na${\rm Fe}_{\rm 3}^{{\rm 3 +}} $ (Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new ferric member of the tourmaline supergroup from the Darasun gold deposit, Transbaikalia, Russia. European Journal of Mineralogy, 28, 581591.Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Acta Crystallographica C44, 775776.Google Scholar
Gawęda, A., Pieczka, A. and Kraczka, J. (2002) Tourmalines from the Western Tatra Mountains (W-Carpathians, S-Poland): their characteristics and petrogenetic importance. European Journal of Mineralogy, 14, 943955.Google Scholar
Hawthorne, F.C. (1996) Structural mechanism for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.Google Scholar
Henry, D.J. and de Brodtkorb, M.K. (2009) Mineral chemistry and chemical zoning in tourmalines, Pampa del Tamboreo, San Luis, Argentina. Journal of South American Earth Sciences, 28, 132141.Google Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Henry, D.J., Kirkland, B.L., Kirkland, D.W., Novák, M. and Hawthorne, F.C. (1999) Sector-zoned tourmaline from the cap rock of a salt dome. European Journal of Mineralogy, 11, 263280.Google Scholar
Henry, D.J., Dutrow, B.L. and Selverstone, J. (2002) Compositional asymmetry in replacement tourmaline – an example from the Tauern Window, Eastern Alps. Geological Materials Research, 4, 118.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F. (2011): Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.Google Scholar
Lis, J., Stępniewski, M. and Sylwestrzak, H. (1965) Brannerite and co-existing minerals in the quartz vein from Wołowa Góra Mountain Near Kowary (Sudetes). Biuletyn Instytutu Geologicznego, 193, 203223 [in Polish].Google Scholar
Lussier, A., Ball, N.A., Hawthorne, F.C., Henry, D.J., Shimizu, R., Ogasawara, Y. and Ota, T. (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure American Mineralogist, 101, 355361.Google Scholar
Mattson, S.M. and Rossman, G.R. (1988) Fe2+-Ti4+ charge transfer in stoichiometric Fe2+, Ti4+-minerals. Physics and Chemistry of Minerals, 16, 7882.Google Scholar
Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. (2007) Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. Granitoids in Poland, Archivum Mineralogiae Monograph, 1, 5987.Google Scholar
Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. and Pieczka, A. (2008) Ti remobilization and sulphide/sulphoarsenide mineralization in amphibolites: effect of granite intrusion (the Karkonosze-Izera Massif, SW Poland). Geological Quarterly, 52, 349368.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacki, K. and Larionov, A. (2010) Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences (Geologishe Rundschau), 99, 2746.Google Scholar
Pieczka, A. (1996) Mineralogical study of Polish tourmalines. Prace Mineralogiczne, 85 [in Polish only].Google Scholar
Pieczka, A. (2007) Blue dravite from the Szklary pegmatite (Lower Silesia, Poland). Mineralogia Polonica 38, 209218.Google Scholar
Pieczka, A., Łobos, K. and Sachanbiński, M. (2004) The first occurrence of elbaite in Poland. Mineralogia Polonica, 35, 209218.Google Scholar
Pieczka, A., Gołębiowska, B. and Parafiniuk, J. (2009) Conditions of formation of polymetallic mineralization in the eastern envelope of the Karkonosze granite: the case of Rędziny, southwestern Poland. Canadian Mineralogist, 47, 765786.Google Scholar
Pieczka, A., Szełęg, E., Łodziński, M., Szuszkiewicz, A., Nejbert, K., Turniak, K. and Ilnicki, S. (2010) Mn-Fe fractionation in tourmalines from pegmatites in the DSS mine at Piława Górna, Góry Sowie Block, southwestern Poland (preliminary data). Mineralogia – Special Papers, 37, 100.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J. and Nejbert, K. (2015) Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic pegmatites, Książ, Poland, June 17-19, 2015. Fieldtrip Guidebook C 73 103.Google Scholar
Pouchou, I.L. and Pichoir, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, I.T., editor). San Francisco Press, San Francisco, USA.Google Scholar
Redler, Ch., Irouschek, A., Jeffries, T. and Gieré, R. (2016) Origin and formation of tourmaline-rich cordierite-bearing metapelitic rocks from Alpe Sponda, Central Alps (Switzerland). Journal of Petrology 57, 277308.Google Scholar
Reznitsky, L.Z., Sklyarov, E.V., Ushapovskaya, Z.F., Nartova, N.V., Kashaev, A.A., Karmanov, N.S., Kanakin, S.V., Smolin, A.S., Nekrasova, E.A. (2001) Vanadiumdravite, NaMg3V6[Si6O18][BO3]3(OH)4, a new mineral of the tourmaline group. Proceedings of Russian Mineralogical Society 130, 5972 [in Russian].Google Scholar
Reznitskii, L., Clark, C.M., Hawthorne, F.C., Grice, J.D., Skogby, H., Hålenius, U. and Bosi, F. (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 17671773.Google Scholar
Różański, P. (1995) Zdjęcie geologiczne głównego grzbietu Karkonoszy między Czołem a Czarnym Grzbietem. MSc Theses. University of Wrocław, Poland.Google Scholar
Sheldrick, G.M. (1998) SHELXL97, Release 97-2. Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany.Google Scholar
Žáček, V., Frýda, J., Petrov, A. and Hyršl, J. (2000) Tourmalines of the povondraite – (oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. Journal of the Czech Geological Society, 45, 312.Google Scholar
Supplementary material: File

Pieczka et al. supplementary material

Pieczka et al. supplementary material

Download Pieczka et al. supplementary material(File)
File 19.7 KB