Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T06:58:16.588Z Has data issue: false hasContentIssue false

Oxybismutomicrolite, a new pyrochlore-supergroup mineral from the Malkhan pegmatite field, Central Transbaikalia, Russia

Published online by Cambridge University Press:  06 April 2020

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034St Petersburg, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 194209Apatity, Russia
Igor S. Peretyazhko
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky str., 664033Irkutsk, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
*
*Author for correspondence: Anatoly V. Kasatkin, Email: [email protected]

Abstract

Oxybismutomicrolite, ideally [(Bi3+,#)2]Σ4+Ta2O6O, where # = subordinate substituents, such as Na+, Ca2+ and vacancy (□), is a microlite-group, pyrochlore-supergroup mineral discovered at the Solnechnaya (‘Sunny’) pegmatite vein, Malkhan pegmatite field, Zabaykalskiy Kray, Central Transbaikalia, Russia. It forms rough octahedral crystals up to 1 mm across and equant grains up to 2 mm across embedded in an albite–lepidolite–elbaite complex. Other associated minerals are Bi-rich fluornatromicrolite, bismutotantalite and stibiotantalite. The new mineral is black, with resinous lustre; the streak is greyish white. It is non-fluorescent under ultraviolet light. Oxybismutomicrolite is brittle, with Mohs’ hardness of ~5. Cleavage is not observed, fracture is uneven. Dmeas. = 6.98(2) g/cm3 and Dcalc. = 7.056 g/cm3. The mineral is optically isotropic. The mean refractive index calculated from the Gladstone–Dale equation is 2.184. The infrared spectrum shows the absence of H2O molecules and OH groups. The chemical composition is (electron microprobe, wt.%): Na2O 3.45, CaO 2.88, MnO 0.31, PbO 0.76, Bi2O3 29.81, ThO2 0.18, TiO2 3.89, SnO2 1.77, Nb2O5 4.50, Ta2O5 51.08, F 1.17, O = F –0.49, total 99.31. The empirical formula, on the basis of 2 cations at the B site, is (Bi0.79Na0.68Ca0.32Mn0.03Pb0.020.16)Σ2.00(Ta1.42Ti0.30Nb0.21Sn0.07)Σ2.00O6.00(O0.52F0.380.10)Σ1.00. The crystal structure refinement (R = 0.019) gave the following data: cubic, Fd–3m, a = 10.4746(11) Å, V = 1149.2(4) Å3 and Z = 8. The eight strongest lines of the powder X-ray diffraction pattern [d, Å(I, %)(hkl)] are: 6.051(12)(111), 3.160(10)(311), 3.026(100)(222), 2.621(32)(400), 1.854(33)(440), 1.581(27)(622), 1.514(7)(444) and 1.203(7)(662). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 5409/1.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Andrade, M.B., Atencio, D., Persiano, A.I.C. and Ellena, J. (2013a) Fluorcalciomicrolite, (Ca, Na,□)2Ta2O6F, a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineralogical Magazine, 77, 29892996.CrossRefGoogle Scholar
Andrade, M.B., Atencio, D., Chukanov, N.V. and Ellena, J. (2013b) Hydrokenomicrolite, (□,H2O)2Ta2(O,OH)6(H2O), a new microlite group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. American Mineralogist, 98, 292296.CrossRefGoogle Scholar
Andrade, M.B., Yang, H., Atencio, D., Downs, R.T., Chukanov, N.V., Lemée-Cailleau, M.H., Persiano, A.I.C., Goeta, A.E. and Ellena, J. (2017) Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineralogical Magazine, 81, 555564.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Bastos Neto, A.C. and Pereira, V.P. (2017) Ralstonite renamed hydrokenoralstonite, coulsellite renamed fluornatrocoulsellite, and their incorporation into the pyrochlore supergroup. The Canadian Mineralogist, 55, 115120.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Bindi, L., Bonazzi, P., Zoppi, M., Stanley, C.J. and Kristiansen, R. (2018) Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a new mineral from Ploskaya, Kola Peninsula, Russia. Mineralogical Magazine, 82, 10491055.CrossRefGoogle Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S.J. (2019a) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.CrossRefGoogle Scholar
Bosi, F., Biagioni, C. and Oberti, R. (2019b) On the chemical identification and classification of minerals. Minerals, 9, 591.CrossRefGoogle Scholar
Britvin, S.N., Siidra, O.I., Lotnyk, A., Krivovichev, S.V. and Depmeier, W. (2010) Niobate and tantalate pyrochlores: soft synthesis by the fluoride route. European Journal of Inorganic Chemistry, 2010, 10821088.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005–2026.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 1716 pp.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Erichsen de Oliveira, O., Rocha Baptista, N. and Baptista, A. (1970) Westgrenita no pegmatito de Tromba, Estado de Goiás. Anais da Academia Brasileira de Ciências, 42, 4144.Google Scholar
Fan, G., Ge, X., Li, G., Yu, A. and Shen, G. (2016) Oxynatromicrolite, (Na,Ca,U)2Ta2O6(O,F), a new member of the pyrochlore supergroup from Guanpo, Henan Province, China. Mineralogical Magazine, 81, 743751.Google Scholar
Geisler, T., Berndt, J., Meyer, H.W., Pollok, K. and Putnis, A. (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment. Mineralogical Magazine, 68, 905922.CrossRefGoogle Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Kasatkin, A.V. (2019) New findings of rare minerals from former Soviet Union countries. Mineralogical Almanac, 24, 447.Google Scholar
Kasatkin, A.V., Britvin, S.N., Peretyazhko, I.S., Chukanov, N.V., Škoda, R. and Agakhanov, A.A. (2019) Oxybismutomicrolite, IMA 2019-047. CNMNC Newsletter No. 51; Mineralogical Magazine, 83, 757761.Google Scholar
Pekov, I.V. and Memetova, L.R. (2008) Minerals of the Lipovka Granite Pegmatites, Central Urals, Russia. Mineralogical Almanac, 13, 645.Google Scholar
Peretyazhko, I.S. (2009) Inclusions of magmatic fluids: P-V-T-X properties of aqueous salt solutions of various types and petrological implications. Petrology, 17, 178201.CrossRefGoogle Scholar
Peretyazhko, I.S. (2010) Genesis of mineralized cavities (miaroles) in granite pegmatites and granites. Petrology, 18, 183208.CrossRefGoogle Scholar
Peretyazhko, I.S. and Zagorsky, V.Ye. (2002) The influence of H3BO3 on fluid pressure in granitic pegmatite miaroles: a computation of isochors and the density of boric solutions. Doklady Earth Sciences, 383A, 340345.Google Scholar
Peretyazhko, I.S., Zagorskiy, V.Ye. and Bobrov, Y.D. (1989) First find of bismuth- and lead-rich tourmaline. Transactions (Doklady) of the USSR Academy of Sciences. Earth Sciences Section, 307, 175179 [in Russian].Google Scholar
Peretyazhko, I.S., Zagorsky, V.Ye., Sapozhnikov, A.N., Bobrov, Y.D. and Rakcheev, A.D. (1992) Bismutocolumbite Bi(Nb,Ta)O4 – a new mineral from miarolitic pegmatites. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 121, 130134 [in Russian].Google Scholar
Peretyazhko, I.S., Prokof'ev, V.Yu., Zagorsky, V.Ye. and Smirnov, S.Z. (2000) Role of boric acids in the formation of pegmatite and hydrothermal minerals: petrologic consequences of sassolite (H3BO3) discovery in fluid inclusions. Petrology, 8, 214237.Google Scholar
Peretyazhko, I.S., Zagorsky, V.Ye., Smirnov, S.Z. and Mikhailov, M.Y. (2004) Conditions of pocket formation of the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia). Chemical Geology, 210, 91111.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Thomas, R., Davidson, P. and Badanina, E. (2012) Water-and boron-rich melt inclusions in quartz from the Malkhan pegmatite, Transbaikalia, Russia. Minerals, 2, 435458.CrossRefGoogle Scholar
Tindle, A.G. and Breaks, F.W. (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36, 609635.Google Scholar
von Knorring, O. and Mrose, M.E. (1963) Westgrenite and waylandite, two new bismuth minerals from Uganda. Geological Society of America, Special Paper, 73, 256257.Google Scholar
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R. and Pöllmann, H. (2011) Fluornatromicrolite, (Na,Ca,Bi)2Ta2O6F, a new mineral from Quixaba, Paraíba, Brazil. The Canadian Mineralogist, 49, 11051110.CrossRefGoogle Scholar
Zagorsky, V.Ye. (2010) Malkhan gem tourmaline deposit: types and nature of miaroles. Doklady Earth Sciences, 431, 314317.CrossRefGoogle Scholar
Zagorsky, V.Ye. (2012) Mineralogy of pockets of the Malkhan tourmaline deposit (Transbaikalia): Feldspars of the Sosedka Vein. Russian Geology and Geophysics, 53, 522534.CrossRefGoogle Scholar
Zagorsky, V.Ye. (2015) Sosedka pegmatite body at the Malkhan gem tourmaline deposit, Transbaikalia: composition, inner structure, and petrogenesis. Petrology, 23, 6892.CrossRefGoogle Scholar
Zagorsky, V.Y. and Peretyazhko, I.S. (1992a) Pegmatity s samotsvetami Tsentralnogo Zabaykalia (Gem pegmatites of Central Transbaikalia). Nauka, Novosibirsk, Russia, 224 pp.Google Scholar
Zagorsky, V.Y. and Peretyazhko, I.S. (1992b) Types and average composition of miarolitic pegmatites of the Malkhan ridge. Russian Geology and Geophysics, 1, 8798 [in Russian].Google Scholar
Zagorsky, V.Y. and Peretyazhko, I.S. (2006) The Malkhan granite-pegmatite system. Transactions of the Russian Academy of Science, 406, 511515.Google Scholar
Zagorsky, V.Y. and Peretyazhko, I.S. (2008) The Malkhan gem tourmaline deposit in Transbaikalia, Russia. Mineralogical Almanac, 13b, 439.Google Scholar
Zagorsky, V.Ye. and Peretyazhko, I.S. (2010) First 40Ar/39Ar Age determinations on the Malkhan granite–pegmatite system: geodynamic implications. Doklady Earth Sciences, 430, 172175.CrossRefGoogle Scholar
Zagorsky, V.Y., Peretyazhko, I.S. and Shmakin, B.M. (1999) Granitic Pegmatites. Vol.3: Miarolitic Pegmatites. Nauka, Novosibirsk, 488 pp. [in Russian].Google Scholar
Zagorsky, V.Ye., Peretyazhko, I.S., Sapozhnikov, A.N., Zhukhlistov, A.P. and Zvyagin, B.B. (2003) Borocookeite, a new member of the chlorite group, from the Malkhan gem tourmaline deposit, Central Transbaikalia, Russia. American Mineralogist, 88, 830836.CrossRefGoogle Scholar
Zagorsky, V.Ye., Peretyazhko, I.S. and Dmitrieva, A.S. (2016) Axinite-(Mn) from miarolitic granitic pegmatites of the Malkhan gem-tourmaline deposit (Transbaikalia, Russia): composition, paragenesis and conditions of formation. European Journal of Mineralogy, 28, 811824.CrossRefGoogle Scholar
Zalashkova, N.E. and Kukharchik, M.V. (1957) Bismutomicrolite – a new variety of microlite. Trudy IMGRE, 1, 7779 [in Russian].Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material

Download Kasatkin et al. supplementary material(File)
File 495.5 KB