Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T01:55:00.264Z Has data issue: false hasContentIssue false

Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism

Published online by Cambridge University Press:  05 July 2018

B. W. D. Yardley
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.
C. A. Rochelle
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.
A. C. Barnicoat
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.
G. E. Lloyd
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Abstract

Examples of oscillatory zoning in metamorphic minerals, imaged using a Back-Scattered Electron Detector on the SEM, are described from a series of contrasting environments. These are a prehnite vein sampled by drilling in the Mirvalles geothermal field, Costa Rica, a pyroxene vein developed in a regional metamorphic shear zone in the Yilgarn block, Western Australia, and a bedded metasomatic diopside rock from regionally metamorphosed metasediments in Connemara, Ireland. In each case the formation of oscillatory zoning can be ascribed to mineral growth under supersaturated conditions due to fluid infiltration. Oscillations can be related in the first example to periodic episodes of pressure release and boiling in the geothermal field, but in the regional metamorphic examples actualistic models are harder to define. The development of oscillatory zoning is likely to be a characteristic feature of infiltration metasomatism and can be used as a criterion in the recognition of metasomatic mineral growth in metamorphic rocks outside the vein environment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: British Geological Survey, Keyworth, Nottingham NG7 2RD.

References

Barley, M. E. and Groves, D. I. (1990) Deciphering the tectonic evolution of Archaean greenstone belts: the importance of contrasting histories to the distribution of mineralisation in the Yilgarn Carton, Western Australia. Precambr. Res., 46, 320.CrossRefGoogle Scholar
Barnicoat, A. C. (1990) Frasers Mines. In Groves, D. I. and Ho, S. E. (eds.) Geology Dept. and University Extension, Univ. Western Australia Publ. 20.Google Scholar
Bird, D. K., Schiffman, P., Elders, W. A., Williams, A. E., and McDowell, S. D. (1984) Calc-silicate mineralisation in active geothermal systems. Econ. Geol., 79, 671-95.CrossRefGoogle Scholar
Bottinga, Y., Kudo, A., and Weill, D. (1966) Some observations on oscillatory zoning and crystallisation of magmatic plagioclase. Am. Mineral, 51, 792806.Google Scholar
Brady, J. B. (1988) The role of volatiles in the thermal history of metamorphic terranes. Petrol, 29, 1187–213.CrossRefGoogle Scholar
Carpenter, M. A. and Putnis, A. (1985) Cation order and disorder during crystal growth: some implications for natural mineral assemblages. Adv. Phys. Geo-chem., 4, 126.Google Scholar
Giggenbach, W. F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Ada, 44, 2021-32.CrossRefGoogle Scholar
Harloff, C. (1927) Zonal structures in plagioclase. Leidsche Geologische Mededeel, 2, 99114.Google Scholar
Haase, C. S, Chadam, J., Feinn, D., and Ortoleva, P. (1980) Oscillatory zoning in plagioclase feldspar. Science, 209, 272-4.CrossRefGoogle ScholarPubMed
Jagger, M. D., Max, M. D., Aftalion, M., and Leake, B. E. (1988) U-Pb zircon ages of basic rocks and gneisses intruded into the Dalradian rocks of Cashel, Connemara, western Ireland. Geol Soc. Lond., 145, 645-8.CrossRefGoogle Scholar
Kirkpatrick, R. J., Klein, L., Uhlmann, D. R., and Hays, J. F. (1979) Rates and processes of crystal growth in the system anorthite-albite. J. Geophys. Res., 84, 3671–6.CrossRefGoogle Scholar
Korzhinsky, D. S. (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultants Bureau, New York, 141 pp.Google Scholar
Kwak, T. A. P. (1987) W-Sn skarn deposits and related metamorphic skarns and granitoids. Elsevier, Amsterdam, 451 pp.Google Scholar
Leake, B. E., Tanner, P. W. G., and Senior, A. (1975) The composition and origin of the Connemara dolomitic marbles and ophicalcites, Ireland. J. Petrol, 16, 237-77.CrossRefGoogle Scholar
Lloyd, G. E. (1987) Atomic number and crystallo-graphic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag., 51, 320.CrossRefGoogle Scholar
Marshall, D. J. (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston.Google Scholar
Meyers, W. J. (1974) Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico. J. Sed. Pet., 44, 837-61.Google Scholar
Miladowski, A. E., Savage, D., Bath, A. E., Fortey, N. J., Nancarrow, P. H. A., and Shepherd, T. J. (in prep.) British Geological Survey Report No. WE/89/63.Google Scholar
Morgan, B. A. (1975) Mineralogy and origin of skarns in the Mount Morrison Pendant, Sierra Nevada, California. Am. J. Sci., 275, 119-42.CrossRefGoogle Scholar
Ortoleva, P., Merino, E., Moore, C., and Chadam, J. (1987) Geochemical self-organisation I: Reaction-transport feedbacks and modelling approach. Am. J. Sci., 287, 9791007.CrossRefGoogle Scholar
Ramseyer, K. and Mullis, J. (1990) Factors influencing short-lived blue cathodoluminescence of a-quartz. Am. Mineral, 75, 791800.Google Scholar
Reeder, R. J., Fagioli, R. O., and Meyers, W. J. (1990) Oscillatory zoning of Mn in solution-grown calcite crystals. Earth Sci. Rev., 29, 39-46.CrossRefGoogle Scholar
Rochelle, C. A. (1990) Fluid-rock interaction in the Mirvalles geothermal field, Costa Rica. Unpubl. Ph.D thesis, University of Leeds.Google Scholar
Rochelle, C. A., Miladowski, A. E., Savage, D., and Corella, M. (1989) Secondary mineral growth in fractures in the Mirvalles geothcrmal system, Costa Rica. Geothermics, 18, 279-86.CrossRefGoogle Scholar
Rose, N. M. and Bird, D. K. (1987) Prehnitc-epidote phase relations in the Nordrc Aputiteq and Kruuse Fjord layered gabbros. J. Petrol., 28, 1193–218.CrossRefGoogle Scholar
Slaughter, J., Kerrick, D. M., and Wall, V. i. (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-SiO2-H2O-CO2 . Am. J. ScL, 275, 143-62.CrossRefGoogle Scholar
Smith, R. K. and Lofgrcn, G. E. (1983) An analytical and experimental study of zoning in plagioclase. Liihos, 16, 153-68.Google Scholar
Walther, J. V. and Orville, P. M. (1983) The extraction-quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures. Am. Mineral., 68, 731-41.Google Scholar
Yardley, B. W. D. and Lioyd, G. E. (1989) An application of cathodoluminescence microscopy to the study of textures and reactions in high-grade marbles from Connemara, Ireland. Geol. Mag., 126, 333–7.CrossRefGoogle Scholar
Yardley, B. W. D., Barber, J. P., and Gray, J. R. (1987) The metamorphism of the Dalradian rocks of western Ireland and its relation to tectonic setting. Phil. Trans. R. Soc. Lond., A321, 243-70.Google Scholar
Yardley, B. W. D., Bottrell, S. H., and Cliff, R. A. (1991) Evidence for a regional-scale fluid loss event during mid-crustal metamorphism. Nature, 349, 151–4.CrossRefGoogle Scholar
Yoder, H. S. (1990) Heat transfer during partial melting: an experimental study of a simple binary silicate system. J. Vole. Geotherm. Res., 43, 136.CrossRefGoogle Scholar