Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T23:41:05.923Z Has data issue: false hasContentIssue false

The origin of the hydrous scandium phosphate, kolbeckite, from the Hagendorf-Pleystein pegmatite province, Germany

Published online by Cambridge University Press:  05 July 2018

H.G. Dill*
Affiliation:
Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany
B. Weber
Affiliation:
Bürgermeister-Knorr Str. 8, D-92637 Weiden i.d.OPf., Germany
M. Füssl
Affiliation:
A.-v.-Humboldt-Str. 4, D-92711 Parkstein, Germany
F. Melcher
Affiliation:
Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover, Germany
*

Abstract

The rare hydrous scandium phosphate, kolbeckite, [Sc(PO4).2H2O], has been recognized for the first time from the Hagendorf-Pleystein pegmatite province. The mineral was formed by the alteration of quartz-rich relict cores of pegmatites containing rutile, ilmenite, columbite, pyrochlore, wolframite, monazite and apatite. The alteration process involved acidic meteoric water and was not related to low-temperature hydrothermal fluids. Scandium and phosphorous for the formation of the kolbeckite were provided by the decomposition of the primary oxides and phosphates, respectively. Hydrous Sc phosphates are considered to form only during advanced stages of weathering in Al- and Fe-poor environments. In Al- and Fe-rich environments Sc is scavenged from solution as a trace component of Al- and Fe phosphates. A special type of leucoxene containing Fe, Al and P was formed during the process of formation of kolbeckite. In the absence of phosphate anions, Sc is removed in solution and ‘normal’ leucoxene is formed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergstøl, S. and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in Tardal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin. Mineralogy and Petrology, 38, 229243.CrossRefGoogle Scholar
Bernard, J.H. and Hyril, J. (2004) Minerals and their Localities. Granite, Prague, 807 pp.Google Scholar
Bernhard, F., Walter, F., Ettinger, K., Taucher, J. and Merreiter, K. (1998) Pretulite, Sc(PO4), a new scandium mineral from Styrian and Lower Austrian lazulite occurrences, Austria. American Mineralogist, 83, 625630.CrossRefGoogle Scholar
Černý, P., Chapman, R., God, R., Niedermayr, G. and Wise, M.A. (1989) Exsolution intergrowths of titanian ferrocolumbite and niobian rutile from the Weinebene spodumene pegmatites, Carinthia, Austria. Mineralogy and Petrology, 40, 197206.CrossRefGoogle Scholar
Černý, P., Chapman, R., Simmons, W.B. and Chackowsky, E. (1999) Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidation. American Mineralogist, 84, 754763.CrossRefGoogle Scholar
Černý, P., Novak, M., Chapman, R. and Masau, M. (2000) Two-stage exsolution of a titanium (Sc, Fe 3+)(Nb,Ta)O4 phase in Norwegian niobian rutile. The Canadian Mineralogist 38, 907913.CrossRefGoogle Scholar
Dill, H.G. (1985) Terrestrial ferromanganese ore concentrations from Mid-European Basement Blocks and their implication concerning the environ-ment of formation during Late Cainozoic (N Bavaria/F.R. Germany). Sedimentary Geology, 45, 7796.CrossRefGoogle Scholar
Dill, H.G. (2001) The geology of aluminium phosphates and sulphates of the alunite supergoup. A review. Earth Science Reviews, 53, 2593.CrossRefGoogle Scholar
Dill, H.G., Bosse, H.-R., Henning, K.-H., Fricke, A. and Ahrend, H. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt – The Central Andes of northwestern Peru. Mineralium Deposita, 32, 149163.CrossRefGoogle Scholar
Edelmann, F. (1926) Kolbeckit, ein neues sachsisches Mineral. Jahrbuch für das Berg- und Hüttenwesen in Sächsen, 100, 7374.Google Scholar
Fleischer, M. (1942) Sterrettite = Eggonite. American Mineralogist, 27, 653.Google Scholar
Flinter, B.H. (1959) Re-examination of'struverite’ from Salak North, Malaya. American Mineralogist, 44, 620632.Google Scholar
Foord, E.E., Birmigham, S.D., Demartin, F., Pilati, T., Gramaccioli, CM. and Lichte, F.E. (1993) Thortveitite and associated Sc-bearing minerals from Ravalli County, Montana. The Canadian Mineralogist, 31, 337346.CrossRefGoogle Scholar
Forster, A. (1965) Erläuterungen zur Geologischen Karte von Bayern 1:25000. Blatt Vohenstrauβ/ Frankenreuth, GLA Munich, Germany, 174 pp.Google Scholar
Frondel, C. (1970) Section 21 Scandium. Pp. 21A121O1 in: Handbook of Geochemistry (Wedepohl, K.H., editor). Springer, Heidelberg. Germany.Google Scholar
Frost, M.T., Grey, I.E., Harrowfield, I.R. and Mason, K. (1983) The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western Australia. Mineralogical Magazine, 47, 201208.CrossRefGoogle Scholar
Hey, M.H., Milton, C. and Dwornik, E.J. (1982) Eggonite (kolbeckite, sterrettite), ScPO4-2H2O. Mineralogical Magazine, 46, 493497.CrossRefGoogle Scholar
Hogarth, D. (1977) Classification and nomenclature of pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Kempe, U. and Wolf, D. (2006) Anomalously high Sc contents in ore minerals from Sn-W deposits: possible economic significance and genetic implications. Ore Geology Reviews, 28, 103122.CrossRefGoogle Scholar
Larsen, E.S. and Montgomery, A. (1940) Sterrettite, a new mineral from Fairfield, Utah. American Mineralogist, 25, 513518.Google Scholar
Mellini, M., Merlino, S., Orlandi, P. and Rinaldi, R. (1982) Cascandite and jervisite, two new scandium silicates from Baveno, Italy. American Mineralogist, 67, 599603.Google Scholar
Mrose, M.E. and Wappner, B. (1959) New data on the hydrated scandium phosphate minerals: Sterrettite, “eggonite”, and kolbeckite. Bulletin of the Geological Society of America, 70, 16481649.Google Scholar
Mucke, A., Keck, E. and Haase, J. (1990) Die genetische Entwicklung des Pegmatits von Hagendorf-Sud/ Oberpfalz. Der Aufschluss, 41, 3351.Google Scholar
Nriagu, J.O. (1976) Phosphate-clay mineral relations in soils and sediments. Canadian Journal of Earth Sciences, 13, 717736.CrossRefGoogle Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1998) Scandiobabingtonite, a new mineral from the Baveno pegmatite, Piedmont, Italy. American Mineralogist, 83, 13301334.CrossRefGoogle Scholar
Postl, W. (1981) Kolbeckit, ein seltenes wasserhältiges Scandiumphosphat aus dem Steinbruch in der Klause bei Gleichenberg. Mitteilungsblatt der Abteilung fur Mineralogie am Landesmuseum Joanneum, 49, 2329.Google Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristianesite a new calcium-scandium-tin sorosilicate from granite pegmatite from Tordal, Telemark, Norway. Mineralogy and Petrology, 75, 8999.CrossRefGoogle Scholar
Mücke, A., Keck, E. and Haase, J. (1990) Die genetische Entwicklung des Pegmatits von Hagendorf-Sud/ Oberpfalz. Der Aufschluss, 41, 3351.Google Scholar
Nriagu, J.O. (1976) Phosphate-clay mineral relations in soils and sediments. Canadian Journal of Earth Sciences, 13, 717736.CrossRefGoogle Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1998) Scandiobabingtonite, a new mineral from the Baveno pegmatite, Piedmont, Italy. American Mineralogist, 83, 13301334.CrossRefGoogle Scholar
Postl, W. (1981) Kolbeckit, ein seltenes wasserhaltiges Scandiumphosphat aus dem Steinbruch in der Klause bei Gleichenberg. Mitteilungsblatt der Abteilung fur Mineralogie am Landesmuseum Joanneum, 49, 2329.Google Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristianesite a new calcium-scandium-tin sorosilicate from granite pegmatite from Tordal, Telemark, Norway. Mineralogy and Petrology, 75, 8999.CrossRefGoogle Scholar
Ramdohr, P. and Strunz, H. (1980) Klockmanns Lehrbuch der Mineralogie, 16th edition. Ferdinand Enke, Stuttgart, Germany, 876 ppGoogle Scholar
Strunz, H., Tennyson, C. and Mücke, A. (1976) Mineralien von Hagendorf/Ostbayern. Fortschrittsbericht 1976. Der Aufschluss, 27, 329340.Google Scholar
Taylor, S.R. and McLennan, M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, UK, 312 pp.Google Scholar
Teuscher, E.O. and Weinelt, W. (1972) Die Metallogenese im Raum Spessart - Fichtelgebirge- Oberpfälzer Wald-Bayerischer Wald. Geologica Bavarica, 65, 573.Google Scholar
Uebel, P.J. (1975) Platznahme und Genese des Pegmatits von Hagendorf-Süd. Neues Jahrbuch für Mineralogie Monatshefte, 318-332.Google Scholar