Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T14:40:50.308Z Has data issue: false hasContentIssue false

Omsite, (Ni, Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France

Published online by Cambridge University Press:  05 July 2018

S. J. Mills*
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
R. M. Housley
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
G. Favreau
Affiliation:
421 Avenue Jean Monnet, 13090 Aix-en-Provence, France
M. Pasero
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
C. Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
S. Merlino
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
C. Berbain
Affiliation:
32 rue R. Cassin, 66270 Le Soler, Pyrénées-Orientales, France
P. Orlandi
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
*

Abstract

Omsite (IMA 2012-025) is a new mineral from the Correc d'en Llinassos, Oms, Pyrénées-Orientales Department, France. It occurs as bright yellow to amber yellow discoidal tablets, flattened on {001}, which form rosettes typically 50–100 μm in diameter. Omsite generally crystallizes on siderite without associated supergene minerals; it occurs less commonly with glaukosphaerite. Crystals have a vitreous to resinous lustre, and are transparent to translucent. Omsite is not fluorescent in either short-wave or long-wave ultraviolet light. It has an estimated hardness of 3 on the Mohs' scale, is brittle with an irregular fracture, and has one poor cleavage on {001}. The calculated density is 3.378 g cm–3. Crystals are uniaxial (–), with indices of refraction of ω = 1.728(3) and ε = 1.66(1), measured in white light. Pleochroism is ω = orange-yellow, ε = pale orange-yellow; ω > ε. The empirical formula [based on 12 (OH + Cl) p.f.u.] is (Ni1.0992+Cu0.6652+Mg0.107Fe0.0453+)Σ 1.916Fe1.0003+(Sb0.9475+As0.072Na0.029)Σ1.048OH11.967Cl0.033. Omsite crystallizes in space group P, with unit-cell parameters a = 5.3506(8), c = 19.5802(15) Å, V = 485.46(10) Å3 and Z = 2 determined by single crystal X-ray diffraction. The five strongest lines in the X-ray powder diffraction pattern [d in Å, (Irel), (hkl)] are as follows: 4.901, (100), (004); 4.575, (83), (011); 2.3539, (81), (11); 1.8079, (48), (11); 3.781, (34), (103). The crystal structure was solved to R1 = 0.0896 for 356 observed reflections [Fo>4σFo] and 0.1018 for all the 469 unique reflections. Omsite is a layered double hydroxide (LDH) mineral, with a topology consistent with members of the hydrotalcite supergroup and cualstibite group.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autran, A. and Azais, H. (1958) Résultats des travaux effectués dans les Aspres. BRGM Report A1376. BRGM, Orléans, France.Google Scholar
Beaumont, C. and Guitard, G. (1954) Introduction á l’étude du district cuprifére des Aspres. BRGM Report A740. BRGM, Orléans, France.Google Scholar
Berbain, C. and Favreau, G. (2007) Un exemple peu courant de minéralisation nickélifére: le Correc d’en Llinassos á Oms (Pyrénées-Orientales). Le Cahier des Micromonteurs, 95, 324.Google Scholar
Berbain, C., Favreau, G. and Aymar, J. (2005) Mines et Minéraux des Pyrénées-Orientales et des Corbiéres. Association Française de Microminéralogie, France, 250 pp.Google Scholar
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92, 198203.CrossRefGoogle Scholar
Kolitsch, U. and Giester, G. (2007) A preliminary determination of the crystal structure of cyanophyllite and revision of its chemical formula. Mitteilungen der Ö sterreichischen Mineralogischen Gesellschaft, 153, 66, [from abstract].Google Scholar
Kolitsch, U., Giester, G. and Pippinger, T. (in press) The crystal structure of cualstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to cualstibite-1T. Mineralogy and Petrology.Google Scholar
Mills, S.J., Christy, A.G., Chen, E.C.-C. and Raudsepp, M. (2009) Revised values of the bond valence parameters for [6]Sb(V)-O and [3–11]Sb(III)-O. Zeitschrift für Kristallographie, 224, 423431.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C. and Bourgoin, V. (2012b) Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structuretype. Mineralogical Magazine, 76, 13371345.CrossRefGoogle Scholar
Pigetvieux, G. (1981) Etude Géologique et Métallogénique des Aspres. Unpublished PhD thesis. Université de Franche-Comté, Besançon, France.Google Scholar
Rius, J. and Allmann, R. (1984) The superstructure of t he doub le laye r mineral wermland it e [Mg7(Al0.57Fe3+ 0.43) 2(OH)18]2+[(Ca0.6Mg0.4) (SO4)2(H2O)12]2-. Zeitschrift für Kristallographie, 168, 133144.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Walenta, K. (1984) Cualstibit, ein neues Sekundärmineral aus der Grube Clara im mittleren Schwarzwald (BRD). Chemie der Erde, 43, 255260.Google Scholar