Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T06:10:00.489Z Has data issue: false hasContentIssue false

Nucleation and supersaturation in porous media (revisited)

Published online by Cambridge University Press:  05 July 2018

M. Prieto*
Affiliation:
Department of Geology, University of Oviedo, 33005-Oviedo, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supersaturation-Nucleation-Time (S-N-T) diagrams are shown to be a useful tool to predict nucleation during reactive-transport processes in porous media. Such diagrams can be determined experimentally or estimated from theoretical calculations based on classical nucleation theory. With this aim, a ‘pragmatic’ understanding of the nucleation rate equation is adopted here and the meaning and magnitude of the interfacial tension and induction time discussed. Theoretical diagrams and experimental data are shown to match fairly well as long as there is an appropriate choice of the ‘relevant’ volume for induction-time calculations.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
© [2014] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

References

Baumgartner, J., Dey, A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N.A.J.M. and Faivre, D. (2013) Nucleation and growth of magnetite from solution. Nature Materials, 12, 310314.CrossRefGoogle ScholarPubMed
Benning, L.G. and Waychunas, G.A. (2008) Nucleation, g.o. th, a.d.aggregation of mineral phases: mechanisms and kinetic controls. Pp. 259–32 in: Kinetics of Water–Rock Interaction (S.L. Brantley, J.D. Kubicki and A.F. White, e.i.ors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Brown, G.E. and Calas, G. (2013) Mineral–aqueous solution interfaces and their impact on the environment. Geochemical Perspectiives, 1, 483742.Google Scholar
De Yoreo, J.J. (2013) Crystal nucleation: More than one pathway. Nature Materials, 12, 284285.CrossRefGoogle ScholarPubMed
Demichelis, R., Raiteri, P., Gale, J.D., Quigley, D. and Gebauer, D. (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nature Communications, 2, 590.CrossRefGoogle ScholarPubMed
Fernández-Díaz, L., Putnis, A., Prieto, M. and Putnis, C.V. (1996) The role of magnesium in the crystallization of calcite and aragonite in a porous medium. Journal of Sedimentary Research, 66, 482491.Google Scholar
Fernández-Martínez, A., Hu, Y., Lee, B., Jun, Y. and Waychunas, G.A. (2013) In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz s u b s t r a t e s : Thermodynamics of CO2 mineral trapping. Environmental Science & Technology, 47, 102109.CrossRefGoogle Scholar
Forbes, T.Z., Radha, A.V. and Navrotsky, A. (2011) The energetics of nanophase calcite. Geochimica et Cosmochimica Acta, 75, 78937905.CrossRefGoogle Scholar
Fritz, B. and Noguera, C. (2009) Mineral precipitation kinetics. Pp. 371410 in: Thermodynamics and Kinetics of Water–Rock Interaction (E.H. Oelkers and J. Schott, e.i.ors). Reviews in Mineralogy and Geochemistry, 70, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Garten, V.A. and Head, L.B. (1973) Nucleation in salt solutions. Journal of the Chemical Society Faraday Transactions I, 69, 514520.CrossRefGoogle Scholar
Gebauer, D. and Cölfen, H. (2011) Prenucleation clusters and non-classical nucleation. Nano Today, 6, 564584.CrossRefGoogle Scholar
Gebauer, D., Völkel, A. and Cölfen, H. (2008) Stable pre-nucleation calcium carbonate clusters. Science, 322, 18191822.CrossRefGoogle Scholar
Gebauer, D., Kellermeier, M., Gale, J.D., Bergström, L. and Cölfen, H. (2014) Pre-nucleation clusters as solute precursors in crystallization. Chemical Society Reviews, 43, 23482371.CrossRefGoogle Scholar
Henisch, H.K. (1988) Crystals in Gels and Liesegang Rings. University Press, Cambridge, UK.CrossRefGoogle Scholar
Henisch, H.K. and García-Ruíz, J.M. (1986) Crystal growth in gels and Liesegang ring formation. I Diffusion relationships. Journal of Crystal Growth, 75, 195202.CrossRefGoogle Scholar
Kaschiev, D. (2000) Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford, UK.Google Scholar
Kashchiev, D. and van Rosmalen, G.M. (2003) Review: Nucleation in solutions revisited. Crystal Research and Technology, 38, 555574.CrossRefGoogle Scholar
Kowacz, M., Prieto, M. and Putnis, A. (2010) Kinetics of crystal nucleation in ionic solutions: Electrostatics and hydration forces. Geochimica et Cosmochimica Acta, 74, 469481.CrossRefGoogle Scholar
Lasaga, A.C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
Liu, X.Y. (1999) A new kinetic model for threedimensional heterogeneous nucleation. Journal of Chemical Physics, 111, 16281635.CrossRefGoogle Scholar
Meldrum, F.C. and Sear, R.P. (2008) Now you see them. Science, 322, 18021803.CrossRefGoogle Scholar
Nielsen, A.E. (1967) Nucleation in aqueous solution. Journal of Physical Chemistry of Solids, suppl. 1, 419426.Google Scholar
Nindiyasari, F., Fernandez-Díaz, L., Griesshaber, L., Astilleros, J.M., Sanchez-Pastor, N. and Schmahl, W.W. (2014) Influence of gelatin hydrogel porosity on the crystallization of CaCO3 . Crystal Growth & Design, 14, 15311542.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J. (2013) Description of input and examples for PHREEQC version 3 – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods (http://pubs.usgs.gov/tm/06/a43), book 6, chap. A43.Google Scholar
Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G. and Sommerdijk, N.A.J.M. (2009) The initial stages of templatecontrolled CaCO3 formation revealed by cryo-TEM. Science, 323, 14551458.CrossRefGoogle ScholarPubMed
Prieto, M., Putnis, A. and Fernández-Díaz, L. (1990) Factors controlling the kinetics of crystallization: supersaturation evolution in a porous medium. Application to barite crystallization. Geological Magazine, 127, 485495.CrossRefGoogle Scholar
Prieto, M., Fernández-González, A. and Martín-Díaz, R. (2002) Sorption of chromate ions diffusing through barite-hydrogel composites: Implications for the fate and transport of chromium in the environment. Geochimica et Cosmochimica Acta, 66, 783795.CrossRefGoogle Scholar
Prieto, M., Katsikopoulos, D. and Fernández-González, A. (2012) Interfacial tension and nucleation behaviour of minerals (revisited). Mineralogical Magazine, 76, 2251.Google Scholar
Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Putnis, A. and Mauthe, G. (2001) The effect of pore size on cementation in porous rocks. Geofluids, 1, 3741.CrossRefGoogle Scholar
Putnis, A., Prieto, M. and Fernández-Díaz, L. (1995) Fluid supersaturation and crystallization in porous media. Geological Magazine, 132, 113.CrossRefGoogle Scholar
Rodríguez-Blanco, J.D., Shaw, S. and Benning, L.G. (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3, 265271.CrossRefGoogle ScholarPubMed
Rodríguez-Navarro, C., Doehne, E. and Sebastian, E. (2002) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement and Concrete Research, 30, 15271534.CrossRefGoogle Scholar
Rodríguez-Ruiz, I., Veesler, S., Gómez-Morales, J., Delgado-López, J.M., Grauby, O., Hammadi, Z., Cadoni, N. and García-Ruiz, J.M. (2014) Transient calcium carbonate hexahydrate (ikaite) nucleated and stabilized in confined nano- and picovolumes. Crystal Growth & Design, 14, 792802.CrossRefGoogle Scholar
Sancho-Tomas, M., Fermani, S., Duran-Olivencia, M.A., Otalora, F., Gomez-Morales, J., Falini, G. and García-Ruiz, J.M. (2013) Influence of charged polypeptides on nucleation and growth of CaCO3 evaluated by counter-diffusion experiments. Crystal Growth & Design, 13, 38843891.CrossRefGoogle Scholar
Sangwal, K. (2007) Additives and Crystallization Processes: from Fundamentals to Applications. Wiley & Sons, Oxford, UK.CrossRefGoogle Scholar
Shtukenberg, A.G., Astilleros, J.M. and Putnis, A. (2005) Nanoscale observations of the epitaxial growth of hashemite on barite (001). Surface Science, 590, 212223.CrossRefGoogle Scholar
Söhnel, O. (1982) Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. Journal of Crystal Growth, 57, 101108.CrossRefGoogle Scholar
Stack, A.G., Fernandez-Martinez, A., Allard, L.F., Banuelos, J.L., Rother, G., Anovitz, L.M., Cole, D.R. and Waychunas, G.A. (2014) Pore-sizedependent calcium carbonate precipitation controlled by surface chemistry. Environmental Science & Technology, 48, 61776183.CrossRefGoogle ScholarPubMed
Vekilov, P.G. (2010) Nucleation. Crystal Growth & Design, 10, 50075019.CrossRefGoogle ScholarPubMed
Walton, A.G. (1969) Nucleation in liquids and solutions. Pp. 225307 in: Nucleation (A.C. Zettlemoyer, e.i.or). Marcel Dekker, New York.Google Scholar
Wang, L., Li, S., Ruiz-Agudo, E., Putnis, C.V. and Putnis, A. (2012) Posner’s cluster revisited: direct imaging of nucleation and growth of nanoscale calcium phosphate clusters at the calcite-water interface. CrystEngComm, 14, 62526256.CrossRefGoogle Scholar
Wu, W. and Nancollas, G.H. (1999) Determination of interfacial tension form crystallization and dissolution data: a comparison with other methods. Advances in Colloid and Interface Science, 79, 229279.CrossRefGoogle Scholar
Yi, P. and Rutledge, G.C. (2012) Molecular origins of homogeneous crystal nucleation. Annual Review of Chemical and Biomolecular Engineering, 3, 157182.CrossRefGoogle ScholarPubMed
Yuwono, V.M., Burrows, N.D., Soltis, J.A. and Penn, R.L. (2010) Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. Journal of the American Chemical Society, 132, 21632165.CrossRefGoogle ScholarPubMed