Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T01:47:40.115Z Has data issue: false hasContentIssue false

Normal and anomalous tobermorites

Published online by Cambridge University Press:  05 July 2018

T. Mitsuda
Affiliation:
Department of Chemistry, University of Aberdeen, Scotland, U.K.
H. F. W. Taylor
Affiliation:
Department of Chemistry, University of Aberdeen, Scotland, U.K.

Summary

Tobermorite minerals vary in some proper lies, notably in whether or not unidimensional lattice shrinkage occurs by about 300 °C to give a 9·3 form; specimens that do this are called normal, and ones that do not, anomalous. Data are compared for thirteen natural tobermorites and the extent to which normal or anomalous character is related to other properties is examined. The most definite correlations found are with chemical composition and morphology. The conditions of formation of normal and anomalous tobermorites are discussed in the light of synthetic evidence.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Permanent address: Materials Research Laboratory, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan.

References

Claringbull, (G. F.) and Hey, (M. H.), 1952. Mineral. Mag. 29, 960-2.Google Scholar
Diamond, (S.), White, (J. L.), and Dolch, (W. L.), 1966. Am. Mineral. 51, 388401.Google Scholar
El-Hemaly, (S. A, S.), Mitsuda, (T.), and Taylor, (H. F. W., 1977. Cement Concr. Res. 7, 429-38.CrossRefGoogle Scholar
Farmer, (V. C.), Jeevaratnam, (J.), Speakman, (K.), and Taylor, (H. F. W., 1966. Syrup. Structure Portland Cement Paste and Concrete, Sp. Rep. 90, [U.S.] Highway Res. Board, 291-9.Google Scholar
Gard, (J. A.) and Taylor, (H. F. W.), 1957. Mineral. Mag. 31, 361-70.Google Scholar
Gottardi, (G.) and Passaglia, (E.), 1966. Periodico Mineral. 35, 197-204.Google Scholar
Hara, (N.) and Inoue, (N.), 1976. J. Ceram. Soc. Japan, 84, 181-5 (Eng. Abs. in Glass Technol. 17, 1976).Google Scholar
Hara, (N.), Chan, (C. F.), and Mitsuda, (T.), 1978. Cement Concr. Res. g, I13-∼6.Google Scholar
Hunt, (C. M.), 1962. Proc. 4th Int. Syrup. Chem. Cement, Washington, 1960, 1, 297305.Google Scholar
Kalousek, (G. L.), 1957. J. Am. Ceram, Soc. 40, 74-80.CrossRefGoogle Scholar
Kalousek, (G. L.), and Roy, (R.), 1957. Ibid. 40, 236-9.CrossRefGoogle Scholar
McConnell, (J. D. C., 1954. Mineral. Mag. 30, 293-305.Google Scholar
Megaw, (H. D.) and Kelsey, (C. H.), 1956. Nature, 177, 390-1.CrossRefGoogle Scholar
Megaw, (H. D.) and Kelsey, (C. H.), 1959. Proc. 3rd Int. Syrup. Reactivity of Solids. Madrid, 1956, 3, 355-65.Google Scholar
Mitsuda, (T.), 1973. Cement Concr. Res. 3, 71-80.CrossRefGoogle Scholar
Mitsuda, (T.), Kusachi, (I.), and Henmi, (K.), 1972. Cement Assoc. Japan, Rev. 26th Gen. Meeting, 47-68.Google Scholar
Mitsuda, (T.) and Taylor, (H. F. W., 1975. Cement Concr. Res. 5, 203-9.CrossRefGoogle Scholar
Murdoch, (J.), 1961. Am. Mineral. 46, 245-57.Google Scholar
Roy, (D. M.) and Johnson, (A. M.), 1967. Proc. [1st] Syrup. Autoclaved Calcium Silicate Building Products. London, 1965, 114-21.Google Scholar
Stephens, (J. D.) and Bray, (E.), 1973. Mineral. Record. 4, 67-72.Google Scholar
Sweet, (J. M.), 1961. Mineral. Mag. 32, 745-53.Google Scholar
Taylor, (H. F. W., 1953. Ibid. 30, 155-65.CrossRefGoogle Scholar
Taylor, (H. F. W., 1959. Proc. 6th Nat. Conf. Clays and Clay Minerals, 101-9.CrossRefGoogle Scholar
Wieker, (W.), 1968. Z. anorg, allg. Chemie, 360, 307-16.CrossRefGoogle Scholar
Wieker, (W.), 1976. Proc. 6th Int. Symp. Chem. Cement. Moscow, 1974, 2 (2), 165-77 (in Russian, with English preprint).Google Scholar