Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:47:18.719Z Has data issue: false hasContentIssue false

Non-metamict betafite from Le Carcarelle (Vico volcanic complex, Italy): occurrence and crystal structure

Published online by Cambridge University Press:  05 July 2018

F. Cámara*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sezione di Pavia, via Ferrata 1, I–27100 Pavia, Italy
C. T. Williams
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I–00146 Roma, Italy
R. Oberti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sezione di Pavia, via Ferrata 1, I–27100 Pavia, Italy
E. Caprilli
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Largo S. Eufemia 19, I–41100 Modena, Italy
*

Abstract

Non-metamict betafite, a pyrochlore-group mineral with general formula A2−mB2XO6Y(O,OH,F)1−n·pH2O and 2 Ti > Nb+Ta and U > 20% at the A site, has been found at Le Carcarelle, (Latium, Italy). It occurs within miarolitic cavities of a foid-bearing syenitic ejectum enclosed within the pyroclastic formation known as “ignimbrite C”, which belongs to the main effusive phase of the Vico volcanic complex. The host rock is composed of K-feldspar, biotite, augitic clinopyroxene, magnetite and minor sodalite. Electron microprobe analyses gave the following crystal-chemical formula: (Ca1.24Na0.17U0.49REE0.03)Σ=1.93 (Ti1.05Nb0.76Zr0.14Fe0.04Ta0.01)Σ=2.00O6(O,OH). Compared with other occurrences reported in the mineralogical literature, betafite from Le Carcarelle is extremely enriched in U and depleted in Th. Due to its young age of formation (∼150 k.y.), this betafite sample is highly crystalline, thus allowing structure refinement of unheated material. Betafite from Le Carcarelle is cubic Fdm, with a = 10.2637(13) Å, and V = 1081.21(35) Å3, and has a smaller A site (consistent with the higher U content), and a larger and more distorted B site (consistent with the higher Ti content) than calciobetafite from Campi Flegrei, Italy (Mazzi and Munno, 1983). Analysis of the atomic displacement parameters provides evidence for static disorder at the X site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellatreccia, F., Della Ventura, G., Williams, C.T., Lumpkin, G.R., Smith, K.L. and Colella, M. (2002) Non-metamict zirconolite polytypes from the feldspathoid- bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). European Journal of Mineralogy, 14, 809820.CrossRefGoogle Scholar
Belolipetskii, A.P. and Voloshin, A.V. (1996) Yttrium and rare earth element minerals of the Kola Peninsula, Russia. Pp. 311326 in: Rare Earth minerals. Chemistry, Origin and Ore Deposits (Jones, A.P., Wall, F. and Williams, C.T., editors). The Mineralogical Society Series, 7. Chapman & Hall, London.Google Scholar
Bowie, S.H.U. and Horne, J.E.T. (1953) Cheralite, a new mineral of the monazite group. Mineralogical Magazine, 30, 9399.CrossRefGoogle Scholar
Boyd, F.R., Finger, L.W. and Chayes, F. (1967) Computer reduction of electron probe data. Carnegie Institution of Washington Yearbook, 67, 21215.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Caprilli, E., Della Ventura, G., Williams, C.T., Parodi, G.C. and Tuccimei, P. (2005) Crystal chemistry of non-metamict pyrochlore group minerals from Latium (Italy). The Canadian Mineralogist (submitted).CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Williams, C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. Pp. 293340 in: Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (Wall, F. and Zeitsev, A., editors). Mineralogical Society Series 10, Mineralogical Society, London.Google Scholar
Chakoumakos, B.C. (1984) Systematics of the pyrochlore structure type, ideal A2B2X6Y. Journal of Solid State Chemistry, 53, 120129.CrossRefGoogle Scholar
Della Ventura, G., Williams, C.T., Cabella, R., Oberti, R., Caprilli, E. and Bellatreccia, F. (1999) Britholitehellandite intergrowths and associated REE minerals from the alkali-sienitic ejecta of the Vico volcanic complex (Latium, Italy); petrological implications bearing on REE mobility in volcanic systems. European Journal of Mineralogy, 11, 843854.CrossRefGoogle Scholar
Della Ventura, G., Bonazzi, P., Oberti, R. and Ottolini, L. (2002) Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist, 87, 739744.CrossRefGoogle Scholar
Ercit, T.S., Črný, P. and Hawthorne, F.C. (1993) Cesstibtantite – a geologic introduction to the inverse pyrochlores. Mineralogy and Petrology, 48, 235255.CrossRefGoogle Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1994) The structural chemistry of kalipyrochlore, a ‘hydropyrochlore’. The Canadian Mineralogist, 32, 415420.Google Scholar
Ewing, R.C. (1975) Alteration of metamict, rare-earth, AB2O6-type Nb-Ta-Ti oxides. Geochimica et Cosmochimica Acta, 39, 521530.CrossRefGoogle Scholar
Foord, E.E. (1982) Minerals of tin, titanium, niobioum and tantalum in granitic pegmatites. Pp. 187238 in Granitic pegmatites in Science and Industry (Černý, P., editor). Short-Course Handbook, 8. Mineralogical Association of Canada, Toronto, Ontario, Canada.Google Scholar
Finch, R. and Murakami, T. (1999) Systematics and paragenesis of Uranium minerals. Pp. 91179 in Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
[Gaertner, H.R. von (1930) Die Kristallstrukturen von Loparit und Pyrochlor. Neues Jahrbuch für Mineralogie und Beilage-Band 61 Abt A, 130] cited in Gieré, R., Buck, E.C., Guggenheim, R., Mathys, D. and Reusser, E. (1999) Alteration of uranium-rich microlite from Mozambique. Abstract with Programs – Geological Society of America, 31, 135.Google Scholar
Gieré, R., Buck, E.C., Guggenheim, R., Mathys, D. and Reusser, E. (1999) Alteration of uranium-rich microlite from Mozambique. Abstract with Programs - Geological Society of America, 31, 135.Google Scholar
Gieré, R., Buck, E.C., Guggenheim, R., Mathys, D., Reusser, E. and Marques, J. (2001 a) Alteration of uranium-rich microlite. Pp. 935944 in Scientific Basis for Nuclear Waste Management XXIV (Hart, K.P. and Lumpkin, G.R., editors). Materials Research Society Symposium Proceedings, Warrendale Publishers, Pennsylvania: Vol. 663.Google Scholar
Gieré, R., Lumpkin, G.R., Williams, C.T., Smith, K.L., Payne, T.E., McGlinn, P.J., Hart, K.P. and Oberti, F. (2001 b) Geochemistry of hydrothermal veins containing zirconolite and betafite at Adamello, Italy. Pp. 979987 in: Scientific Basis for Nuclear Waste Management XXIV (Hart, K.P. and Lumpkin, G.R., editors). Materials Research Society Symposium Proceedings, Warrendale Publishers, Pennsylvania, Vol. 663.Google Scholar
Hayakawa, I. and Kamizono, H. (1993) Durability of an La2Zr2O7 waste form in water. Journal of Materials Science, 28, 513517.CrossRefGoogle Scholar
Hodgson, N.A. and Le Bas, M.J. (1992) The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineralogical Magazine, 56, 201214.CrossRefGoogle Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403410.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Pp. 105141 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Hogarth, D.D. and Horne, J.E.T. (1989) Non-metamictic uranoan pyrochlore and uranpyroclore from tuff near Ndale, Fort Portal area, Uganda. Mineralogical Magazine, 53, 257262.CrossRefGoogle Scholar
Johan, V. and Johan, Z. (1994) Accessory minerals in the Cínovec (Zinnwald) granite cupola, Czech Republic. Part 1: Nb-, Ta- and Ti-bearing oxides. Mineralogy and Petrology, 51, 323343.Google Scholar
Laurenzi, M.A. and Villa, I.M. (1985) K/Ar chronology of the Vico Volcano (Latium, Italy). IAVCEI, 1985 Scientific Assembly, Giardini Naxos, Italy, Abstract Volume.Google Scholar
Locardi, E. (1965) Tipi di ignimbriti di magmi mediterranei. II vulcano di Vico. Atti Società Toscana di Scienze Naturali, 45, 55173.Google Scholar
Lower, S.K., Maurice, P.A. and Traina, S.J. (1998 a) Simultaneous dissolution of hydroxyapatite and precipitation of hydroxypyromorphite: direct evidence of homogeneous nucleation. Geochimica and Cosmochimica Acta, 62, 17731780.CrossRefGoogle Scholar
Lower, S.K., Maurice, P.A., Traina, S.J. and Carlson, E.H. (1998 b) Aqueous Pb sorption by hydroxylapatite: applications of atomic force microscopy to dissolution, nucleation and growth studies. American Mineralogist, 83, 147158.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1988) Alpha-decay damage in minerals of the pyrochlore group. Physics and Chemistry of Minerals, 16, 220.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. American Mineralogist, 77, 179188.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. American Mineralogist, 81, 12371248.CrossRefGoogle Scholar
Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., Gieré, R. and Williams, C.T. (1994) Retention of actinides in natural pyrochlores and zirconolites. Radiochimica Acta, 66/67, 469474.Google Scholar
Lumpkin, G.R., Day, R.A., McGlinn, P.J., Payne, T.E., Gieré, R. and Williams, C.T. (1999) Investigation of the long-term performance of betafite and zirconolite in hydrothermal veins from Adamello, Italy. Pp. 793800 in: Scientific Basis for Nuclear Waste Management XXII (Wronkiewicz, D.J. and Lee, J.H., editors) Materials Research Society Symposium Proceedings, Warrendale Publishers, Pennsylvania, Vol. 556.Google Scholar
Lumpkin, G.R., Ewing, R.C., Williams, C.T. and Mariano, A.N. (2001) An overview of the crystal chemistry, durability, and radiation damage effects of pyrochlore from natural systems. Pp. 921934 in: Scientific Basis for Nuclear Waste Management XXIV (Hart, K.P. and Lumpkin, G.R., editors). Materials Research Society Symposium Proceedings, Warrendale Publishers, Pennsylvania, Vol. 663.Google Scholar
Mazzi, F. and Munno, R. (1983) Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymingite and zirkelite: comparison with pyrochlore and zirconolite. American Mineralogist, 68, 262276.Google Scholar
Oberti, R., Ottolini, L., Cámara, F. and Della Ventura, G. (1999) Crystal structure of non-metamict Th-rich hellandite-(Ce) from Latium (Italy) and crystal chemistry of the hellandite-group minerals. American Mineralogist, 84, 913921.CrossRefGoogle Scholar
Oberti, R., Ottolini, L., Della Ventura, G. and Parodi, G.C. (2001) On the symmetry and crystal chemistry of britholite: new structural and microanalytical data. American Mineralogist, 86, 10661075.CrossRefGoogle Scholar
Ohnenstetter, D. and Piantone, P. (1992) Pyrochlore-group minerals in the Beauvoir peraluminous leucogranite, Massif Central, France. The Canadian Mineralogist, 30, 771784.Google Scholar
Petruk, W. and Owens, D.R. (1975) Electron microprobe analyses for pyrochlores from Oka, Quebec. The Canadian Mineralogist, 13, 282285.Google Scholar
Potts, P.J., Tindle, A.G. and Isaacs, M.C. (1983) On the precision of electron microprobe data: a new test for the homogeneity of mineral standards. American Mineralogist, 68, 12371242.Google Scholar
Pozharitskaya, L.K. and Samoylov, V.S. (1972) Petrologiya, Mineralogiya i Geokhimiya Karbonatitov Vostochnoi Sibiri (Salikov, L.M., editor). Nauka, Moscow. (in Russian) cited in Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Pp. 105141 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M. and Ramm, E.J. (1988) Synrock. Pp. 233334 in: Radioactive Waste Form for the Future (Lutze, W. and Ewing, R.C., editors). North-Holland, Amsterdam.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS, Siemens area detector absorption correction software. University of Goettingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELX–97. Programs for Crystal Structure Determination and Refinement. University of Goettingen, Germany.Google Scholar
Sollevanti, F. (1983) Geologic, volcanologic and tectonic setting of the Vico-Cimino area, Italy. Journal of Volcanology and Geothermal Research, 17, 203217.CrossRefGoogle Scholar
Speer, J.A. (1982) The actinide orthosilicates. Pp. 113135 in: Orthosilicates (Ribbe, P.H., editor). Reviews in Mineralogy, 5. The Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Subramanian, M.A., Aravamudan, G. and Subba Rao, G.V. (1983) Oxide pyrochlores – a review. Progress in Solid State Chemistry, 15, 55143.CrossRefGoogle Scholar
Williams, C.T. (1996 a) Analysis of rare earth minerals. Pp. 327348 in: Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A.P., Wall, F. and Williams, C.T., editors). Mineralogical Society Series 7, Chapman & Hall, London.Google Scholar
Williams, C.T. (1996 b) A note on the occurrence of niobian zirconolite, pyrochlore and baddeleyite from the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineralogical Magazine, 60, 639646.CrossRefGoogle Scholar
Wills, A.S. and Brown, I.D. (1999) VaList, CEA, France.Google Scholar
Wise, M.A. and Černý, P. (1990) Primary compositional range and alteration trends of microlite from the Yellowknife pegmatite field, Northwest Territories, Canada. Mineralogy and Petrology, 43, 8398.CrossRefGoogle Scholar
Wu, C., Yuan, Z. and Bai, G. (1996) Rare earth deposits in China. Pp. 281310 in Rare Earth Minerals. Chemistry, Origin and Ore Deposits (Jones, A.P., Wall, F. and Williams, C.T., editors). The Mineralogical Society Series, 7. Chapman & Hall, London.Google Scholar
Supplementary material: PDF

Cámara et al. supplementary material

Table 4, Structure factor data (pdf 40 KB)

Download Cámara et al. supplementary material(PDF)
PDF 37.9 KB