Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T03:43:18.277Z Has data issue: false hasContentIssue false

New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus

Published online by Cambridge University Press:  02 January 2018

E. V. Galuskin*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
F. Gfeller
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
I. O. Galuskina
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
A. Krzątała
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Y. Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
J. Kusz
Affiliation:
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
M. Dulski
Affiliation:
Silesian Centre for Education and Interdisciplinary Research, Institute of Material Science, 75 Pułku Piechoty 1a, 41-500 Chorzow, Poland
M. Gardocki
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
A. G. Gurbanov
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny 35, 119017 Moscow, Russia Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markov str. 93a, 362008 Vladikavkaz, Republic of North Ossetia-Alania, Russia
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
*

Abstract

The new mineral gazeevite, BaCa6(SiO4)2(SO4)2O (R3m, a = 7.1540(1), c = 25.1242(5) Å, V = 1113.58(3) Å3, Z = 3), was found in an altered xenolith in rhyodacites ofthe Shadil-Khokh volcano, Southern Ossetia and at three localities in larnite pyrometamorphic rocks of the Hatrurim Complex; Nahal Darga and Jabel Harmun, Judean Mountains, Palestinian Autonomy, and Har Parsa, Negev Desert, Israel. Larnite, fluorellestadite–fluorapatite, srebrodolskite–brownmilleriteand mayenite-supergroup minerals are the main minerals commonly associated with gazeevite. Gazeevite is isostructural with zadovite and aradite; the 1:1 type AB6(TO4)2(TO4)2W, occurs together with the structurallyrelated minerals of the nabimusaite series, 3:1 type AB12(TO4)4(TO4)2W3, where A = Ba, K, Sr...; B = Ca, Na...; T = Si, P, V5+, S6+, Al...; W = O2–,F. Single antiperovskite layers {[WB6](TO4)2} in the structure type of gazeevite–zadovite and triple {[W3B12](TO4)4} layers in arctite–nabimusaite areintercalated with single A(TO4) layers. These minerals with an interrupted antiperovskite structure are characterized by a modular layered structure derived from hatrurite, Ca3(SiO4)O. Gazeevite is colourless, transparent, with a white streakand vitreous lustre. Gazeevite is brittle, shows pronounced parting and imperfect cleavage on {001}; it is uniaxial (–), ω = 1.640(3), ε = 1.636(2) (λ = 589 nm) and nonpleochroic; Mohs' hardness is ∼4.5, VHN50 = 417 kg mm–2. The calculateddensity is = 3.39 g cm–3. The main lines of the calculated powder X-ray diffraction pattern are as follows (d(Å)/I/hkl): 3.58/100/110, 3.07/91/021, 2.76/47/116, 1.789/73/220, 3.29/60/113, 2.78/36/024, 2.12/25/125, 2.21/21/208. Raman spectra of gazeeviteare compared with spectra of other minerals. The formation of gazeevite and minerals of the nabimusaite–dargaite series is connected with high-temperature alteration of an early assemblage of clinker minerals affected by later fluids generated by volcanic activity or combustion processes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentor, Y.K. (editor) (1960) Lexique Stratigraphique International, Asie. Volume III, Section 10.2, Israel. Centre National de la Research Scientifique, Paris.Google Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V (2015) Earth's phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Science Reports, 5, 8355.Google ScholarPubMed
Bruker (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dulski, M., Wrzalik, R., Galuskina, I. and Galuskin, E. (2015) Raman investigation of new and potentially new minerals of nabimusaite supergroup. Periodico di Mineralogia, ECMS 2015, 6768.Google Scholar
Fayos, J., Glasser, F.P., Howie, R.A., Lachowski, E. and Perez-Mendez, M. (1985) Structure of dodecacalcium potassium fluoride dioxide terasilicate bis (sulphate), KF-2[Ca6(SO4)(SiO4)2O]: afluorine containing phase encountered in cement clinker production process. Acta Crystallographica, C41, 814816.Google Scholar
Galuskin, E.V., Galuskina, I.O., Kusz, J. Armbruster, T., Marzec, K.M., Dzierżanowski, P. and Murashko, M. (2014) Vapnikite Ca3UO6-a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 78, 571581.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y, Wlodyka, R., Dzierżanowski, P. and Murashko, M. (2015a) New minerals with modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part II: Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F, and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I. O., Vapnik, Ye., Murashko, M., Wodyka, R. and Dzierżanowski, P. (2015b) New minerals with modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part I: Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rock of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I. O., Vapnik, Y., Dulski, M., Murashko, M., Dzierżanowski, P., Sharygin, V.V., Krivovichev, S.V. and Wirth, R. (2015c) Mayenite supergroup, Part III: Fluormayenite, Ca12Al14O32 [Q4F2], and fluorkyuy-genite, Ca12Al14O32[(H2O)4F2], two new minerals of mayenite supergroup from pyrometamorphic rock of Hatrurim Complex. European Journal of Mineralogy, 27, 123136.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T. M., Vapnik, Y., Murashko, M.N. and Gazeev, V.M. (2015d) New and potentially new minerals of nabimusaite family with modular antiperovskite structures. Abstracts of XII General Meeting of the Russian Mineralogical Society, 302-304.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, J., Dulski, M. and Piotr Dżierzanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Prusik, K., Dzierżanowski, P., Murashko, M., Galuskin, E.V (2013) Gurimite, IMA 58 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708. Mineralogical Magazine, 77, 26952709.Google Scholar
Galuskina, I.O., Vapnik, Ye., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014a) Harmunite CaFe2O4-a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014b) Dzierżanowskite, IMA 2014-032. CNMNC Newsletter No. 21, August 2014, page 802; Mineralogical Magazine, 78, 797804.Google Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Lazic, B., Grew, E.S., Vapnik, Y., Dzierżanowski, P. and Murashko, M. (2014c) Khesinite, IMA2014-033. CNMNC Newsletter No. 21, August 2014, page 838; Mineralogical Magazine, 78, 833840.Google Scholar
Galuskina, I.O., Krüger, B., Galuskin, E.V., Armbruster, 1, Gazeev, V.M., Włodyka, R., Dulski, M. and Piotr Dzierżanowski (2015a) Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewite-bearing endoskarn zone of an altered xenolith in ignimbrites from upper Chegem caldera, northern Caucasus, Kabardino-Balkaria, Russia: occurrence, crystal structure, and new data on the mineral assemblages. The Canadian Mineralogist, 53, 325344.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Vapnik, Y., Dzierżanowski, P. and Murashko, M. (2015b) Hexacelsian, IMA2015-045. CNMNC Newsletter No. 27, October 2015, page 1224; Mineralogical Magazine, 79, 12291236.Google Scholar
Gazeev, V.M., Zadov, A.E., Gurbanov, A.G., Pertsev, N. N., Mokhov, A.V and Dokuchaev, A.Y (2006) Rare minerals from Verkhniechegemskaya caldera (in xenoliths of skarned limestone). Vestnik Vladikavkazskogo Nauchnogo Centra, 6, 1827.Google Scholar
Gazeev, V.M., Gurbanova, O.A., Zadov, A.E., Gurbanov, A.G., Leksin, A.B. (2012) Mineralogy of skarned carbonate xenoliths from Shadil-Khokh volcano (Kelski volcanic area of the Great Caucasian Range). Vestnik Vladikavkazskogo Nauchnogo Centra, 2, 2333 [in Russian].Google Scholar
Gfeller, F., Galuskin, E.V., Galuskina, I.O., Armbruster, I, Vapnik, Ye., Włodyka, R. and Dzierżanowski, P. (2013) Natural BaCa6[(SiO4)(PO4)](PO4)2F with a new modular structure type. Goldschmidt 2013 Conference Abstracts, Mineralogical Magazine, 77, 1160;https://doi.org/10.1180/minmag.2013.077.5.7 CrossRefGoogle Scholar
Gfeller, F., Galuskina, I.O., Galuskin, E.V., Armbruster, T., Vapnik, Y., Dulski, M., Gardocki, M., Jeżak, L. and Murashko, M. (2015a) Dargaite, IMA 2015-068. CNMNC Newsletter No. 28, December 2015, page 1860; Mineralogical Magazine, 79, 18591864.Google Scholar
Gfeller, F., Widmer, R., Galuskin, E.V., Galuskina, I.O. and Armbruster, T. (2015b) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. European Journal Mineralogy, 27, 755769.CrossRefGoogle Scholar
Gfeller, F., Środek, D., Kusz, J., Dulski, M., Gazeev, V., Galuskina, I., Galuskin, E. and Armbruster, T. (2015c) Mayenite supergroup, part IV: Crystal structure and Raman investigation of Al-free eltyubyuite from the Shadil-Khokh volcano, Kel’ Plateau, Southern Ossetia. European Journal Mineralogy, 27, 137143.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Jeffery, J.W (1952) The crystal structure of tricalcium silicate. Acta Crystallographica, 5, 2635.CrossRefGoogle Scholar
Krivovichev, S.V (2008) Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109113.Google Scholar
Krüger, H. (2010) Ca5 45Li3 55[SiO4]3O0 45Fj 55 and Ca7K [SiO4]3F3: single-crystal synthesis and structures of two trigonal oxyfluorides. Zeitschrift für Kristallographie, 225, 418424.CrossRefGoogle Scholar
Mumme, W.G. (1995) Crystal structure of tricalcium silicate from a portland cement clinker and its application to quantitative XRD analysis. Neues Jahrbuchfür Mineralogie Monatshefte, 1995, 145160.Google Scholar
Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, Y., Britvin, S.N., Polekhovsky, Y.S. and Ivakin, Y.D. (2011) Barioferrite BaFe12O19: A new mineral species of the magnetoplumbite group from the Hatrurim Formation in Israel. Geology Ore Deposit, 7, 558563.CrossRefGoogle Scholar
Nishi, F and Takéuchi, Y (1984) The rhombohedral structure of tricalcium silicate at 1200°C. Zeitschrift für Kristallographie, 168, 197212.CrossRefGoogle Scholar
Sharygin, YV, Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe +AlO8 — A new perovskite-related mineral from Hatrurim Basin, Israel. European Journal Mineralogy, 25, 97111.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sokol, E.V., Seryotkin, Y.V., Kokh, S.N., Vapnik, Y., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Sharygin, V.V. (2015) Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 583596.CrossRefGoogle Scholar
Sokolova, E.V., Yamnova, N.A., Egorov-Tismenko, Y.K. and Khomyakov, A.P. (1984) The crystal structure of a new sodium-calcium-barium phosphate of Na, Ca and Ba (Na5Ca)Ca6Ba(PO4)6F3 . Doklady Akademii Nauk SSSR, 274, 7883.Google Scholar
Vapnik, Y., Sharygin, YY, Sokol, E.V and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Supplementary material: File

Galuskin et al. supplementary material

Supplementary Table S1

Download Galuskin et al. supplementary material(File)
File 51.7 KB