Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T08:32:18.253Z Has data issue: false hasContentIssue false

New crystal-chemical data for marécottite

Published online by Cambridge University Press:  02 January 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
*

Abstract

Marécottite, ideally Mg3[(UO2)4O3(OH)(SO4)2]2(H2O)28, a triclinic, Mg-dominant member of the zippeite group, was described originally from a small uranium deposit at La Creusaz in Wallis (Switzerland). It has recently been found at Jáchymov (Czech Republic), where it forms exceptional crystals, up to 0.3 mm across. According to an electron microprobe study of these crystals, marécottite from Jáchymov is chemically similar to the material from the La Creusaz deposit. However, the Jáchymov crystals exhibit more cation substitution (Zn2+ and Mn2+ for Mg2+). The chemical composition of marécottite from Jáchymov corresponds to the empirical formula [(Na0.05K0.07)Σ0.12(Mg1.83Zn0.41Mn0.41Cu0.15Ni0.08)Σ2.88Al0.07]Σ3.07(UO2)8[(SO4)3.77(SiO4)0.21]Σ3.98O6(OH)1.84·28H2O (the mean of four representative spots; calculated on the basis of eight U atoms and 28 H2O per formula unit and 1.84 OH for charge balance). According to single-crystal X-ray diffraction, marécottite from Jáchymov is triclinic, P1, a = 10.8084(2), b = 11.2519(3), c = 13.8465(3) Å, α = 66.222(2), β = 72.424(2), γ = 70.014(2)o, V = 1421.57(6) Å3 and Z = 1. The crystal structure was refined from a highly redundant dataset (30,491 collected reflections) to R1 = 0.0367 for all 7042 unique reflections. The refined structure confirms the previously determined structure for the crystal from the La Creusaz deposit. An extensive network of hydrogen bonds is an important feature that keeps the whole structure together, but the positions of H atoms had not been determined previously. The H-bond scheme proposed based on a detailed bond-valence analysis and the role of different types of molecular H2O in the structure is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agilent Technologies (2012) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130. in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford. Brown, I.D and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244248.Google Scholar
Brugger, J., Meisser, N. and Burns, P.C. (2003) Contribution to the mineralogy of acid drainage of uranium minerals: marecottite and the zippeitegroup. American Mineralogist, 88, 676685.CrossRefGoogle Scholar
Brugger, J., Wallwork, K.S., Meisser, N., Pring, A., Ondruš, P. and Čejka, J. (2006) Pseudojohannite from Jáchymov, Musunoı¨ and La Creusaz: a new member of the zippeite group. American Mineralogist, 91, 929936.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C., Deely, K.M. and Hayden, L.A. (2003) The crystal chemistry of the zippeite group. The Canadian Mineralogist, 41, 687706.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Frondel, C., Ito, J., Honea, R.M. and Weeks, A.M. (1976) Mineralogy of the zippeite group. The Canadian Mineralogist, 14, 429436.Google Scholar
Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39, 841874.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and Crystallography of Uranium. Pp. 714. in: Uranium: From Cradle to Grave (P.C. Burns, and G.E. Sigmon, editors). MAC Short Course Vol. 43. Mineralogical Association of Canada, Winnipeg 2013.Google Scholar
Ondruš, P., Veselovský , F., Skála, R., Císařová, I., Hloušek, J., Frýda, J., Vavřín, I., Čejka, J. and Gabašová, A. (1997) New naturally occurring phases of secondary origin from Jáchymov (Joachimsthal). Journal of the Czech Geological Society, 42, 77108.Google Scholar
Ondruš, P., Veselovský , F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála, R., Sejkora, J. and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech Geological Society, 48, 19147.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip-A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The Crystallographic Computing System. Institute of Physics, Praha, Czech Republic. Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Plášil, J. (2015) Crystal structure refinement of pseudojohannite, Cu3(OH)2[(UO2)4O4(SO4)2] (H2O)12 from the tpe locality-Jáchymov, Czech Republic. Journal of Geosciences, 60, 123127.CrossRefGoogle Scholar
Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I. and Škoda, R. (2011) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. American Mineralogist, 96, 983991.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J., Veselovský , F., Hloušek, J., Meisser, N. and Brugger, J. (2012) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12. American Mineralogist, 97, 17961803.CrossRefGoogle Scholar
Plášil, J., Sejkora, J., Škoda, R. and Škácha, P. (2014) The recent weathering of uraninite from the Červená vein, Jáchymov (Czech Republic): a fingerprint of the primary mineralization geochemistry onto the alteration association. Journal of Geosciences, 59, 223253.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (f-r-Z) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467501.CrossRefGoogle Scholar