Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:28:41.583Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIV. Badalovite, NaNaMg(MgFe3+)(AsO4)3, a member of the alluaudite group

Published online by Cambridge University Press:  22 May 2020

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
*
*Author for correspondence: Email: [email protected]

Abstract

The new alluaudite-group mineral badalovite was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hematite, tenorite, cassiterite, johillerite, nickenichite, calciojohillerite, bradaczekite, metathénardite, aphthitalite, langbeinite, calciolangbeinite, sanidine, fluorophlogopite, fluoborite, tilasite, anhydrite, pseudobrookite, sylvite, halite, lammerite, urusovite, ericlaxmanite, arsmirandite, svabite, krasheninnikovite, euchlorine, wulffite and alumoklyuchevskite. Badalovite forms oblique-angled prismatic crystals up to 1 mm × 1 mm × 5 mm, typically combined in groups or crusts up to several hundred cm2 in area. The mineral is transparent, green, grey, yellow or colourless, with vitreous lustre. It is brittle, the Mohs hardness is 3½. Cleavage was not observed, the fracture is uneven. Dcalc is 4.02 g cm–3. Badalovite is optically biaxial (–), α = 1.753(3), β = 1.757(3), γ = 1.758(3) and 2Vmeas. = 50(10)°. Chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 9.23, K2O 0.19, CaO 2.04, MgO 13.78, MnO 0.31, CuO 0.12, ZnO 0.24, Al2O3 0.06, Fe2O3 12.77, TiO2 0.01, SiO2 0.06, P2O5 0.33, V2O5 0.05, As2O5 61.51, SO3 0.02, total 100.72. The empirical formula based on 12 O apfu is Na1.67Ca0.20K0.02Mg1.92Zn0.02Mn0.02Cu0.01Fe3+0.90Al0.01(As3.01P0.03Si0.01)Σ3.05O12. The simplified formula is Na2Mg2Fe3+(AsO4)3. Badalovite is monoclinic, C2/c, a = 11.9034(3), b = 12.7832(2), c = 6.66340(16) Å, β = 112.523(3)°, V = 936.59(4) Å3 and Z = 4. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 6.41(38)(020), 5.505(20)(200), 3.577(23)($\bar{1}$31), 3.523(25)(310), 3.211(46)($\bar{1}$12), 2.911(28)($\bar{2}$22, $\bar{3}$12), 2.765(100)(240, 400) and 2.618(26)($\bar{1}$32). The crystal structure was solved from single-crystal XRD data with an R1 of = 2.49%. Badalovite is isostructural with other alluaudite-group minerals. Its simplified crystal chemical formula is A(1)NaA(1)’A(2)A(2)’NaM(1)MgM(2)(Mg0.5Fe3+0.5)2(AsO4)3 (□ – vacancy) and the end-member formula is NaNaMg(MgFe3+)(AsO4)3. The mineral is named in honour of the outstanding mineralogist and geochemist Stepan Tigranovich Badalov (1919–2014).

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond–valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Hatert, F. (2019) A new nomenclature scheme for the alluaudite supergroup. European Journal of Mineralogy, 31, 807822.CrossRefGoogle Scholar
Koshlyakova, N.N., Zubkova, N.V., Pekov, I.V., Giester, G. and Sidorov, E.G. (2018) Crystal chemistry of johillerite. The Canadian Mineralogist, 56, 189201.CrossRefGoogle Scholar
Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013) Hatertite, Na2(Ca,Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683691.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Moore, P.B. (1971) Crystal-chemistry of alluaudite structure type – contribution to paragenesis of pegmatite phosphate giant crystals. American Mineralogist, 56, 19551975.Google Scholar
Moore, P.B. and lto, J. (1979) Alluaudites, wyllieites, arrojadites: Crystal chemistry and nomenclature. Mineralogical Magazine, 43, 227235.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G., Pushcharovsky, D.Y. (2016a) Badalovite, IMA 2016-053. CNMNC Newsletter No. 33, October 2016, page 1140; Mineralogical Magazine, 80, 11351144.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453458.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485495.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2019c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6. Mineralogical Magazine, 83, 633638.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Scheidl, K.S. (2019d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XII. Zubkovaite, Ca3Cu3(AsO4)4. Mineralogical Magazine, 83, 879886.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Britvin, S.N., Turchkova, A.G., Sidorov, E.G., Pushcharovsky, D.Y. (2020) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIII. Pansnerite, K3Na3Fe3+6(AsO4)8. Mineralogical Magazine, 84, 143151.CrossRefGoogle Scholar
Sarp, H. and Černý, R. (2005) Yazganite, NaFe3+2(Mg,Mn)(AsO4)3⋅H2O, a new mineral: its description and crystal structure. European Journal of Mineralogy, 17, 367374.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas–solid–liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 110.9 KB