Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T22:30:56.320Z Has data issue: false hasContentIssue false

Nestolaite, CaSeO3·H2O, a new mineral from the Little Eva mine, Grand County, Utah, USA

Published online by Cambridge University Press:  05 July 2018

A. V. Kasatkin*
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka Street, 22, block 1, 119034, Moscow, Russia
J. Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ–182 21, Prague 8, Czech Republic
J. Marty
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka Street, 22, block 1, 119034, Moscow, Russia
A. A. Agakhanov
Affiliation:
Faculty of Geology, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
D. I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
I. S. Lykova
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia

Abstract

Nestolaite (IMA 2013-074), CaSeO3·H2O, is a new mineral species from the Little Eva mine, Grand County, Utah, USA. It is named in honour of the prominent Italian mineralogist and crystallographer Fabrizio Nestola. The new mineral was found on sandstone matrix as rounded aggregates up to 2 mm across and up to 0.05 μm thick consisting of tightly intergrown oblique-angled, flattened to acicular crystals up to 30 μm long and up to 7 μm (very rarely up to 15 μm) thick. Nestolaite associates with cobaltomenite, gypsum, metarossite, orschallite and rossite. The new mineral is light violet and transparent with a white streak and vitreous lustre. The Mohs hardness is 2½. Nestolaite is brittle, has uneven fracture and perfect cleavage on {100}. The measured and calculated densities are Dmeas. = 3.18(2) g/cm3 and Dcalc. = 3.163 g/cm3. Optically, nestolaite is biaxial positive. The refractive indices are α = 1.642(3), β = 1.656(3), γ = 1.722(6). The measured 2V is 55(5)° and the calculated 2V is 51°. In transmitted light nestolaite is colourless. It does not show pleochroism but has strong pseudoabsorption caused by high birefringence. The chemical composition of nestolaite (wt.%, electronmicroprobe data) is: CaO 28.97, SeO2 61.14, H2O (calc.) 9.75, total 99.86. The empirical formula calculated on the basis of 4 O a.p.f.u. (atoms per formula unit) is Ca0.96Se1.02O3·H2O. The Raman spectrum is dominated by the Se–O stretching and O–Se–O bending vibrations of the pyramidal SeO3 groups and O–H stretching modes of the H2O molecules. The mineral is monoclinic, space group P21/c, with a = 7.6502(9), b = 6.7473(10), c = 7.9358(13) Å, β = 108.542 (12)°, V = 388.37(10) Å3 and Z = 4. The eight strongest powder X-ray diffraction lines are [dobs in Å(hkl) (Irel)]: 7.277 (100)(100), 4.949 (110)(37), 3.767 (002)(29), 3.630 (200)(58), 3.371 (020)(24), 3.163 (02)(74), 2.9783 (21)(74) and 2.7231 (112)(31). The crystal structure of nestolaite was determined by means of the Rietveld refinement from the powder data to Rwp = 0.019. Nestolaite possesses a layered structure consisting of CaΦ–SeO3 sheets, composed of edge-sharing polyhedra. Adjacent sheets are held by H bonds emanating from the single (H2O) group within the sheets. The nestolaite structure is topologically unique.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérar, J.-F. and Lelann, P. (1991) Esds and estimated probable errors obtained in Rietveld refinements with local correlations. Journal of Applied Crystallography, 24, 15.CrossRefGoogle Scholar
Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography, 27, 892900.CrossRefGoogle Scholar
Hentschel, G., Tillmanns, E. and Hofmeister, W. (1985) Hannebachite, natural calciumsulfite hemihydrate, CaSO3·–H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 1985, 241250.Google Scholar
Kampf, A.R., Marty, J., Nash, B.P., Plášil, J., Kasatkin, A.V. and Škoda, R. (2012) Calciodelrioite, Ca(VO3)2(H2O)4, the Ca analogue of delrioite, Sr(VO3)2(H2O)4. Mineralogical Magazine, 76, 28032817.CrossRefGoogle Scholar
Kampf, A.R., Hughes, J.M., Marty, J. and Brown, F.H. (2013) Nashite, Na3Ca2[(V4+V5+9)O28]·24H2O, a new mineral species from the Yellow Cat Mining District, Utah and the Slick Rock Mining District, Colorado: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 51, 2737.CrossRefGoogle Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Goliáš, V. and Birch, W.D. (2013) Manganoblödite, Na2Mn(SO4)2·4H2O and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 367383.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mička, Z., Němec, I., Vojtíšek, P., Ondráček, J. and Hölsä, J. (1994) Crystal structure, thermal behavior, and infrared absorption spectrum of cobalt(II) hydrogen selenite dihydrate Co(HSeO3)2·2H2O. Journal of Solid State Chemistry, 112, 237242.CrossRefGoogle Scholar
Mička, Z., Němec, I., Vojtíšek, P. and Ondráček, J. (1996) Crystal Structure and infrared absorption spectra of magnesium (II) hydrogen selenite tetrahydrate, Mg(HSeO3)2·4H2O. Journal of Solid State Chemistry, 122, 338342.Google Scholar
Nestola, F., Guastoni, A., Cámara, F., Secco, L., Dal Negro, A., Pedron, D. and Beran, A. (2009a) Aluminocerite-Ce: a new species from Baveno, Italy: description and crystal structure determination. American Mineralogist, 94, 487493.CrossRefGoogle Scholar
Nestola, F., Guastoni, A., Bindi, L. and Secco, L. (2009b) Dalnegroite, Tl5–xPb2x(As,Sb)21–xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland. Mineralogical Magazine, 73, 10271032.CrossRefGoogle Scholar
Nestola, F., Cámara, F., Chukanov, N.V., Atencio, D., Coutinho, J.M.V., Contreira Filho, R.R. and Farber, G. (2012) Witzkeite: a new rare nitrate-sulphate mineral from a guano deposit at Punta de Lobos, Chile. American Mineralogist, 97, 17831787.CrossRefGoogle Scholar
Newman, W.L. (1962) Distribution of elements in sedimentary rocks of Colorado Plateau –A preliminary report. Pp. 337–440 in: Contributions to the Geology of Uranium 1959–1960, United States Geological Survey Bulletin, 1107-F, US Government Printing Office, Washington DC.Google Scholar
Peercy, P.S. (1970) The Raman spectrum of NaH3(SeO3)2. Optics Communication, 2, 270272.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Prague.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Schröpfer, L. (1973) Strukturelle untersuchungen am CaSO3·–H2O. Zeitschrift für anorganische und allgemeine Chemie, 401, 114.CrossRefGoogle Scholar
Stokes, W.L. (1952) Uranium – Vanadium deposits of the Thompsons Area Grand County, Utah. Utah Geological and Mineralogical Survey Bulletin, 46. Utah Department of Natural Resources, Salt Lake City, Utah, USA, 51 pp.Google Scholar
Torrie, B.H. (1972) Raman and Infrared Spectra of Na2SeO3, NaHSeO3, H2SeO3, and NaH3(SeO3)2. Canadian Journal of Physics, 51, 610615.CrossRefGoogle Scholar
Valkonen, J., Losoi, T. and Pajunen, A. (1985) Structure of calcium selenite(IV) monohydrate, CaSeO3·H2O. Acta Crystallographica, C41, 652654.Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

CIF

Download Kasatkin et al. supplementary material(File)
File 516 KB