Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:45:42.339Z Has data issue: false hasContentIssue false

The nature and significance of exsolved phases in some chrome spinels from the Rhum layered intrusion

Published online by Cambridge University Press:  05 July 2018

A. Putnis
Affiliation:
Mineral Sciences Group, Department of Mineralogy and Petrology, Downing Place Cambridge CB2 3EW
G. D. Price
Affiliation:
Mineral Sciences Group, Department of Mineralogy and Petrology, Downing Place Cambridge CB2 3EW

Summary

Chrome spinels from seams in the Rhum layered intrusion, Inner Hebrides, generally contain very fine platelets of exsolved phases. Despite the low bulk Ti content (< 1%) of the spinel grains, analytical electron microscopy shows these platelets to be highly enriched in titanium. Electron diffraction indicates the presence of platelets of two different phases, one a magnesian ilmenite, the other a defect spinel intermediate phase. The platelets are the result of oxidation of the spinel at moderate (c. 600 °C) temperatures and their distribution suggests that oxygen fugacity gradients existed across some of the seams.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bøe, (P.), 1978. Can. Mineral. 16, 597-600.Google Scholar
Brown, (G. M.), 1956. Phil. Trans. Roy. Soc. B, 240, 1-53.Google Scholar
Buddington, (A. F.) and Lindsley, (D. H.), 1964. J. Petrol. 5, 310-57.CrossRefGoogle Scholar
Dekker, (E. H. L.) and Rieck, (G. D.), 1974. Rev. lnt. Hautes Temp. Refract. 11, 187-92.Google Scholar
Greskovitch, (C.) and Stubican, (V. S.), 1968. J. Am. Ceram. Soc. 51, 42-6.CrossRefGoogle Scholar
Henderson, (P.), 1975. Geochim. Cosmochim. Acta,. 39, 1035-44.CrossRefGoogle Scholar
Henderson, (P.) and Suddaby, (P.), 1971. Contrib. Mineral. Petrol. 33, 21-31.CrossRefGoogle Scholar
Katsura, (T.) and Muan, (A.), 1964. Trans. Am. Inst. Min. Metal. Eng. 230, 77-84.Google Scholar
Lewis, (M. H.), 1969. Phil. Mag. 20, 985-98.CrossRefGoogle Scholar
Lindsley, (D. H.), 1962. Carnegie Inst. Washington Yearb. 61, 100-6.Google Scholar
Lindsley, (D. H.) 1976. In: Oxide Minerals Short Course Notes. Min. Soc. Am.Google Scholar
Lorimer, (G. W.) and Cliff, (G.), 1976. In: Wenk, (H. U.), ed. Electron Microscopy in Mineralogy. Ch. 7.3. Springer-Verlag, Heidelberg.Google Scholar
Price, (G. D.) and Putnis, (A.), 1979. Contrib. Mineral. Petrol. 69, 355 9.CrossRefGoogle Scholar
Putnis, (A.), 1978. Phys. Chem. Minerals,. 3, 183-97.CrossRefGoogle Scholar
Putnis, (A.) 1979. Mineral. Mag. 43, 293-6.CrossRefGoogle Scholar
Turnock, (A. C.) and Eugster, (H. P.), 1962. J. Petrol. 3, 533-65.CrossRefGoogle Scholar
Verhoogen, (J.), 1962. J. Geol. 70, 168-81.CrossRefGoogle Scholar