Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:38:33.806Z Has data issue: false hasContentIssue false

Multi-component origin of Caledonian lamprophyres of northern England

Published online by Cambridge University Press:  05 July 2018

R. Macdonald
Affiliation:
Department of Environmental Sciences, University of Lancaster, Lancaster LA1 4YQ, UK
R. S. Thorpe
Affiliation:
Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
J. W. Gaskarth
Affiliation:
Department of Geological Sciences, University of Aston, Gosta Green, Birmingham B4 7ET, UK
A. R. Grindrod
Affiliation:
Department of Environmental Sciences, University of Lancaster, Lancaster LA1 4YQ, UK

Abstract

Mafic lamprophyre dykes in northern England were emplaced soon after the final closure of the Iapetus Ocean at the end of the Caledonian orogeny. High Mg/(Mg+Fe) ratios and Cr and Ni contents are consistent with equilibrium with mantle peridotite. Incompatible trace element abundances suggest that the mantle sources were metasomatized prior to the melting events. Three components are recognized in the lamprophyre chemistry: (i) a depleted mantle source, taken to be that overlying the subducting lithosphere; (ii) a H2O-rich subduction zone component, related to the dehydration of the subducting oceanic crust; and (iii) a CO2-rich phase thought to result from the degassing of the mantle after ocean closure. This multi-component origin may be applicable to other lamprophyres of calc-alkaline affinity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthurton, R. S., and Wadge, A. J. (1981) Geology of the country around Penrith. Mem. Geol. Surv. G.B.Google Scholar
Bachinski, S. W., and Scott, R. B. (1979) Geochim. Cosmochim. Acta. 43, 93-100.CrossRefGoogle Scholar
Bailey, D. K. (1980) Phil. Trans. R. Soc. London, A 297, 309-22.Google Scholar
Bailey, D. K., Tarney, J., and Dunham, K. C., eds. (1980) Ibid. A 297, 137-493.Google Scholar
Best, M. G. (1975) J. Petrol. 16, 212-36.CrossRefGoogle Scholar
Bott, M. H. P. (1978) In The Geology of the Lake District (Moseley, F., ed.) Yorkshire Geological Society, 25-40.Google Scholar
Brown, G. C., and Locke, C. A. (1979). Earth Planet. Sci. Lett. 45, 6979.CrossRefGoogle Scholar
Crook, K. A. W. (1980) J. Struct. Geol. 2, 289-303.CrossRefGoogle Scholar
Dewey, J. F. (1969) Nature, 222, 124-9.CrossRefGoogle Scholar
Dewey, J. F. (1982) J. Geol. Soc. Lond. 139, 371-412.CrossRefGoogle Scholar
Frey, F. A., Green, D. H., and Roy, S. D. (1978) J. Petrol. 19, 463-513.CrossRefGoogle Scholar
Hampton, C. M., and Taylor, P. N. (1983) J. Geol. Soc. Lond. 140, 499509.CrossRefGoogle Scholar
Harker, A. (1892) Geol. Mag. 9, 199-206.CrossRefGoogle Scholar
Hawkesworth, C. J., and Norry, M. J., eds. (1983) Continental Basalts and Mantle Xenoliths, Shiva Publishing, 272 pp.Google Scholar
Hawkesworth, C. J., O'Nions, R. K., Pankhurst, R. J., Hamilton, P. J., and Evenson, N. M. (1977) Earth Planet. Sci. Lett. 36, 253-62.CrossRefGoogle Scholar
Hickey, R. L., and Frey, F. A. (1982) Geochim. Cosmochim. Acta. 46, 2099-115.CrossRefGoogle Scholar
Ingham, J. K. (1966) Proc. Yorks. Geol. Soc. 35, 455505.CrossRefGoogle Scholar
Kay, R. W., and Gast, P. W. (1973) J. Geol. 81, 653-82.Google Scholar
Leeder, M. R. (1982) J. Geol. Soc. Lond. 139, 479-91.CrossRefGoogle Scholar
Luhr, J. F., and Carmichael, I. S. E. (1981) Contrib. Mineral. Petrol. 76, 127-47.CrossRefGoogle Scholar
Macdonald, R., Gass, K. N., Thorpe, R. S., and Gass, I. G. (1984) J. Geol. Soc. Lond. 141, 147-59.CrossRefGoogle Scholar
Nakamura, N. (1974) Geochim. Cosmochim. Acta. 38, 757-75.CrossRefGoogle Scholar
Pearce, J. A. (1982) In Andesites (Thorpe, R. S., ed.) John Wiley and Sons, 525-48.Google Scholar
Pearce, J. A. (1983) In Continental Basalts and Mantle Xenoliths (Hawkesworth, C. J. and Norry, M. J., eds.) Shiva Publishing, 230-49.Google Scholar
Piper, J. D. A., McCook, A. S., Watkins, K. P., Brown, G. C., and Morris, W. A. (1978) Geol. J. 13, 73-92.CrossRefGoogle Scholar
Potts, P. J., Thorpe, O. W., and Watson, J. S. (1981) Chem. Geol. 34, 331-52.CrossRefGoogle Scholar
Rock, N. M. S. (1977) Earth Sci. Rev. 13, 123-69.CrossRefGoogle Scholar
Rock, N. M. S. (1984) Trans. R. Soc. Edinb.: Earth ScL 74, 193-227.CrossRefGoogle Scholar
Rogers, N. W., Bachinski, S. W., Henderson, P., and Parry, S. J. (1982) Earth Planet. Sci. Lett. 57, 30512.CrossRefGoogle Scholar
Sato, H. (1977) Lithos, 10, 113-20.CrossRefGoogle Scholar
Shimizu, N., and Arculus, R. J. (1975) Contrib. Mineral. Petrol. 50, 23140.CrossRefGoogle Scholar
Smith, H. G. (1930) Proc. Geol. Assoc. 41, 33642.CrossRefGoogle Scholar
Sun, S. S., and Hanson, G. N. (1975) Contrib. Mineral. Petrol. 52, 77-106.CrossRefGoogle Scholar
Sutherland, D. S., ed. (1982) Igneous Rocks of the British Isles, Wiley, New York.Google Scholar
Thompson, R. N. (1982) Scott. J. Geol. 18, 49-107.CrossRefGoogle Scholar
Thompson, R. N. (1984) Proc. Geol. Assoc. 95, 249-62.CrossRefGoogle Scholar
Thorpe, R. S., Beckinsale, R. D., Patchett, P. J., Piper, J. D. A., Davies, G. R., and Evans, J. A. (1984) J. Geol. Soc. Lond. 141, 521-36.CrossRefGoogle Scholar
Van Bergen, J. M., Ghezzo, C., and Ricci, C. A. (1983) J. Volcanol. Geotherm. Res. 19, 135.CrossRefGoogle Scholar
Velde, D. (1968) Bull. Soc. Geol. Franc. 10, 601-12.CrossRefGoogle Scholar
Venturelli, G., Thorpe, R. S., Dal Piaz, G. V., Del Moro, A., and Potts, P. J. (1984) Contrib. Mineral. Petrol. 86, 209-20.CrossRefGoogle Scholar
Watson, J. V. (1984) J. Geol. Soc. Lond. 141, 193214.CrossRefGoogle Scholar
Wilson, A. D. (1955) Bull. Geol. Surv. G.B. 9, 56-8.Google Scholar