Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:31:56.875Z Has data issue: false hasContentIssue false

Mösbauer spectroscopic study of the decomposition mechanism of ankerite in CO2 atmosphere

Published online by Cambridge University Press:  05 July 2018

A. E. Milodowski
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG
B. A. Goodman
Affiliation:
The Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB9 2QJ
D. J. Morgan
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG

Abstract

Mössbauer spectroscopy has been used to identify the iron-containing products that are formed during the thermal decomposition of ankerite in a CO2 atmosphere. The decomposition takes place in three stages and evidence is produced to show that the first stage involves decomposition of ankerite to yield a periclase-wustite solid solution, (Mg,Fe)O, along with calcite and CO2, the periclase-wustite then reacting with CO2 to produce magnesioferrite (MgFe2O4) and CO. In the second stage the magnesioferrite and calcite react to produce periclase and dicalcium ferrite. The third stage does not involve reaction of Fe-containing phases and corresponds to the decomposition of calcite to CaO.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, T. (1981) Studies on nonstoichiometry of Ca2MnxFe2-xO5+8 . Mat. Res. Bull. 16, 469-76.CrossRefGoogle Scholar
Bancroft, G. M. (1973) MOssbauer Spectroscopy: an introduction for inorganic chemists and geochemists, McGraw Hill, London.Google Scholar
Bauminger, R., Cohen, S. G., Marinov, A., Ofer, S. and Segal, E. (1961) Study of the low temperature transition in magnetite and the internal fields active on iron nuclei in some spinel ferrites, using Mössbauer absorption. Phys. Rev. 122, 1447-50.CrossRefGoogle Scholar
Conradi, L. A. and Holth, T. (1954) Thermal dissociation of ankerite. Proc. Int. Syrup. Reactivity Solids, Gothenburg 1, 441-51.Google Scholar
Goodman, B. A. (1980) Mössbauer spectroscopy. In Advanced Chemical Methods for Soil and Clay Minerals Research (Stucki, J. A. and Banwart, W. L., eds.). D. Reidel Dordrecht, pp. 192.Google Scholar
Goodman, B. A. (1981) Mössbauer spectroscopy. In Advanced Techniques for Clay Mineral Analysis (Fripiat, J. J., ed.). Elsevier, Amsterdam, pp. 113-37.Google Scholar
Hawthorne, F. C. (1988) Mössbauer spectroscopy. In Spectroscopic Methods in Mineralogy and Geology, Mineral. Soc. Amer. Reviews in Mineralogy, 18 (Hawthorne, F. C., ed.), pp. 255340.CrossRefGoogle Scholar
Milodowski, A. E. and Morgan, D. J. (1981) Thermal decomposition of minerals of the dolomite-ferroan dolomite-ankerite series in a carbon dioxide atmosphere. Proc. 2nd Sym. Thermal Anal. Aberdeen (Dollimore, D., ed.). Heyden, London, 468-71.Google Scholar
Morgan, D. J. (1977) Simultaneous DTA-EGA of minerals and natural mineral mixtures. J. Thermal Anal. 12, 245-63.CrossRefGoogle Scholar
Murad, E. and Johnston, J. H. (1987) Iron oxides and oxyhydroxides. I. Mössbauer spectroscopy applied to inorganic chemistry, 2 (Long, G. J., ed.). Plenum Publ. Corp., 507-82.Google Scholar
Sawatzky, G. A., van der Woude, F. and Morrish, A. H. (1969) Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747-57.CrossRefGoogle Scholar
Stevens, J. G., Pollak, H., Zhe, L., Stevens, V. E., White, R. M. and Gibson, J. L. (1983) Mineral: Data, Mössbauer Effect Data Center, University of North Carolina.Google Scholar
Vervey, E. J. W., Haayman, P. W. and Romeijin, F. C. (1947) Physical properties and cation arrangement of oxides with spinel structures. II Electronic conductivity. J. Chem. Phys. 15, 181-7.CrossRefGoogle Scholar
Warne, S. St. J., Morgan, D. J. and Milodowski, A. E. (1981) Thermal analysis studies of the dolomite, ferroan dolomite, ankerite series. Part 1. Iron content recognition and determination by variable atmosphere DTA. Thermochim. Acta 51, 105-11.CrossRefGoogle Scholar