Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:55:36.947Z Has data issue: false hasContentIssue false

Monazite-(Ce) and xenotime-(Y) microinclusions in fluorapatite of the pegmatites from the Volta Grande mine, Minas Gerais state, southeast Brazil, as witnesses of the dissolution–reprecipitation process

Published online by Cambridge University Press:  25 June 2019

Felipe Emerson André Alves*
Affiliation:
Programa de Pós-Graduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21949-900, Ilha do Fundão, Rio de Janeiro, RJ, Brazil Centre for Mineral Technology, Division for Technological Characterisation, Avenida Pedro Calmon, 900, 22941-908, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
Reiner Neumann
Affiliation:
Centre for Mineral Technology, Division for Technological Characterisation, Avenida Pedro Calmon, 900, 22941-908, Ilha do Fundão, Rio de Janeiro, RJ, Brazil Programa de Pós-Graduação em Geociências, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, 20940-040, São Cristóvão, Rio de Janeiro, RJ, Brazil
Ciro Alexandre Ávila
Affiliation:
Programa de Pós-Graduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21949-900, Ilha do Fundão, Rio de Janeiro, RJ, Brazil Programa de Pós-Graduação em Geociências, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, 20940-040, São Cristóvão, Rio de Janeiro, RJ, Brazil
Fabiano Richard Leite Faulstich
Affiliation:
Programa de Pós-Graduação em Geociências, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, 20940-040, São Cristóvão, Rio de Janeiro, RJ, Brazil
*
*Author for correspondence: Felipe Emerson André Alves, Email: [email protected]

Abstract

Fluorapatite with monazite-(Ce) and xenotime-(Y) microinclusions occurs in the lithium–caesium–tantalum pegmatite body A of the Volta Grande mine, Minas Gerais state, Southeast Brazil. The fluorapatite displays faint zoning, detected mainly by cathodoluminescence. Electron probe and laser ablation analyses indicate that zoning in the fluorapatite corresponds to variation in Mn and rare-earth element (REE) content. Such compositional variation is attributed to partial removal of the REE from the fluorapatite structure during a dissolution–reprecipitation process, forming monazite-(Ce) and xenotime-(Y) microinclusions in the REE-depleted zones of the fluorapatite. These inclusions exhibit an inherited geochemical signature, manifested by low Th and U concentrations when compared to monazite and xenotime crystallised from melts. Rhodochrosite and calcite inclusions are also associated with monazite-(Ce) and xenotime-(Y) and are probably products of the same process, recycling Ca, Mn, and CO32− from the fluorapatite through the following reaction: [Ca(5–2ab–½x),Naa,(Y + REE)a,Mnb][(PO4)3–x(CO3)x(F)] + Fluid[a(2Ca2+ + P5+) + (xb)(Ca2+) + H2O)] → [Ca5(PO4)3(F,OH)] + a[(Y + REE)PO4] + b[Mn(CO3)] + (xb)[Ca(CO3)] + Fluid a[Na+].

On the basis of new fluid-inclusion analyses, we propose that a hot (T > 204.5°C), salty (16 wt.% eq. NaCl, attributed to LiCl), hydrous fluid mediated the dissolution–reprecipitation of the fluorapatite. This fluid corresponds to similarly described Li-rich fluids which were suggested to have re-equilibrated the mineralogical assemblage at the Volta Grande mine.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Coulson

References

Alves, F.E.A. (2017) Mineralogical Characterization of The Sn-Nb-Ta-Li Ore from the Volta Grande Mine, Focusing on the Rare Earth Element Minerals. MSc Dissertation, Universidade Federal do Rio de Janeiro, Brazil.Google Scholar
Assumpção, C.S. (2015) Mineralogical and Geochemical Characterization of the Volta Grande Mine pegmatite, São João del Rei Pegmatite Province, Nazareno, Minas Gerais. MSc Dissertation, Universidade Federal de Ouro Preto, Brazil.Google Scholar
Ávila, C.A., Teixeira, W., Cordani, U.G., Moura, C.A.V. and Pereira, R.M. (2010) Rhyacian (2.23–2.20 Ga) juvenile accretion in the southern São Francisco craton, Brazil: Geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt. Journal of South American Earth Sciences, 29, 464482.Google Scholar
Ávila, C. A., Teixeira, W., Vasques, F. S. G., Dussin, I.A. and Mendes, J.C. (2012) Geoquímica e idade U-Pb (LA-ICP-MS) da crosta oceânica anfibolítica Riaciana do Cinturão Mineiro, borda meridional do Cráton São Francisco. In: Anais do XLVI Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia, XLVI Congresso Brasileiro de Geologia, 2012.Google Scholar
Ávila, C.A., Teixeira, W., Bongiolo, E.M., Dussin, I.A. and Vieira, T.A.T. (2014) Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segment of the Mineiro belt, São Francisco Craton, Brazil. Precambrian Research, 243, 221251.Google Scholar
Ávila, C.A., Bongiolo, E.M., Vasques, F.S.G., Souza, A.N., Seoane, J.C.S., Ritins, J.I.V., Vilela, F.T., Pinheiro, M.A.P., Vasconcelos, F.F., Cardoso, C.D., Silveira, V.S.L., Silva, P.R.S., Simon, M.B., Faulstich, F.R.L., Pires, G.L.C., Stohler, R.C., Oliveira, F.V.C.S.R.S., Tedeschi, M.F. (2018) Projeto ARIM – Reavaliação das Sequências Metavulcanossedimentares a Sudoeste do Quadrilátero Ferrífero. Mapa Geológico Integrado. Belo Horizonte. Serviço Geológico do Brasil (CPRM). Escala 1:100.000.Google Scholar
Barbosa, N.S., Teixeira, W., Ávila, C.A., Montecinos, P.M. and Bongiolo, E.M. (2015) 2.17–2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil: U-Pb ages, geochemical constraints and tectonics. Precambrian Research, 270, 204225.Google Scholar
Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323333.Google Scholar
Bodnar, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683684.Google Scholar
Boudreau, A.E. and McCallum, I.S. (1990) Low temperature alteration of REE-rich chlorapatite from the Stillwater Complex, Montana. American Mineralogist, 75, 687693.Google Scholar
Broom-Fendley, S., Styles, M.T., Appleton, J.D., Gunn, G. and Wall, F. (2016) Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. American Mineralogist, 101, 596611.Google Scholar
Cao, M.-J., Zhou, Q.-F., Qin, K.-Z., Tang, D.-M. and Evans, N.J. (2013) The tetrad effect and geochemistry of apatite from the Altay Koktokay No.3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Mineralogy and Petrology, 107, 9851005.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.Google Scholar
Chu, M.-F., Wang, K.-L., Griffin, W.L., Chung, S.-L., O'Reilly, S.Y., Pearson, N.J. and Iizuka, Y. (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology, 50, 18291855.Google Scholar
Dubois, M., Monnin, C., Castelain, T., Coquinot, Y., Gouy, S., Gauthier, A. and Goffé, B. (2010) Investigation of the H2O-NaCl-LiCl system: a synthetic fluid inclusion study and thermodynamic modeling from -50°C to + 100°C and up to 12 mol/kg. Economic Geology, 105, 329338.Google Scholar
Ercit, T.S. (2005) REE-enriched granitic pegmatites. Pp. 175–199 in: Rare-Element Geochemistry and Mineral Deposits (Linnen, R.L. and Sampson, I.M., editors). Geological Association of Canada Short Course Notes, 17.Google Scholar
Ercit, T.S., Groat, L.A. and Gault, R.A. (2003) Granitic pegmatites of the O'Grady batholith, N.W.T., Canada: a case study of the evolution of the elbaite subtype of rare-element granitic pegmatite. The Canadian Mineralogist, 41, 117137.Google Scholar
Faulstich, F.R.L., Ávila, C.A., Neumann, R., Silveira, V.S.L. and Callegario, L.S. (2016) Gahnite from the São João del Rei Pegmatitic Province, Minas Gerais, Brazil: chemical composition and genetic implications. The Canadian Mineralogist, 54, 13851402.Google Scholar
Förster, H.-J. (1998 a) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solutions series. American Mineralogist, 83, 259272.Google Scholar
Förster, H.-J. (1998 b) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. American Mineralogist, 83, 13021315.Google Scholar
Gaft, M., Reisfeld, R. and Panczer, G. (2005) Luminescence spectroscopy of minerals and materials. Springer-Verlag Berlin Heidelberg, Berlin, 356 pp.Google Scholar
Gorobets, B.S. and Rogojine, A.A. (2002) Luminescent spectra of minerals. Coronet Books, Inc., Moscow, 300 pp.Google Scholar
Harlov, D.E. (2011) Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia Granite Pegmatite, Froland, Bamble Sector, southern Norway. Mineralogy and Petrology, 102, 7786.Google Scholar
Harlov, D.E. (2015) Apatite: a fingerprint for metasomatic processes. Elements, 11, 171176.Google Scholar
Harlov, D.E. and Förster, H-J. (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 12091229.Google Scholar
Harlov, D.E. and Förster, H-J. (2008) Origin of monazite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif Czech Republic. Mineralogy and Petrology, 94, 926.Google Scholar
Harlov, D.E., Förster, H.-J. and Nijland, T.G. (2002 a) Fluid-induced nucleation of REE-phosphate minerals in apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist, 87, 245261.Google Scholar
Harlov, D.E., Andersson, U.B., Förster, H-J., Nyström, J.O., Dulski, P. and Broman, C. (2002 b) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology, 191, 4772.Google Scholar
Harlov, D.E., Wirth, R. and Förster, H-J. (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268286.Google Scholar
Harlov, D.E., Marschall, H.R. and Hanel, M. (2007) Fluorapatite-monazite relationships in granulite-facies metapelites, Schwarzwald, southwest Germany. Mineralogical Magazine, 71, 223234.Google Scholar
Hughes, J.M. and Rakovan, J.F. (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements, 11, 165170.Google Scholar
Kragten, J. (1994) Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst, 119, 21612165.Google Scholar
Krause, J., Harlov, D.E., Pushkarev, E.V. and Brügmann, G.E. (2013) Apatite and clinopyroxene as tracers for metasomatic processes in nepheline clinopyroxenites of Uralian-Alaskan-type complexes in the Ural Mountains, Russian Federation. Geochimica et Cosmochimica Acta, 121, 503521.Google Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35, 153165.Google Scholar
London, D. (2018) Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101, 349383.Google Scholar
Longerich, H.P., Jackson, S.E. and Günther, D. (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899904.Google Scholar
McDonough, W.F. and Sun, S.-s. (1995) The composition of the Earth. Chemical Geology, 120, 223253.Google Scholar
Neumann, R., Vasques, F.d.S.G. and Gomes, O.d.F.M. (2014) Simultaneous cathodoluminescence imaging and Raman and cathodoluminescence spectroscopies: applied mineralogy of the REE (Sn, Ta, Zr, F) ore from Pitinga, Brazilian Amazon. 21st meeting of the International Mineralogical Association. International Mineralogical Association, IMA Meeting, 2014.Google Scholar
Neumann, R., Ávila, C.A., Cidade, T.P., Nascimento, L.S., Alves, F.E.A., Garcia, P.H.V., Vasconcelos, F.F., Moutinho, V.F., Silva, V.H.R.M., Faulstich, F.R.L. and Cunha, F.C.M.B. (2018) Mineralogia dos pegmatitos da região da mina do Volta Grande, Província Pegmatítica de São João el Rei, Minas Gerais. 49° Congresso Brasileiro de Geologia.Google Scholar
Piccoli, P.M. and Candela, P.A. (2002) Apatite in igneous systems. Pp. 255292 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.Google Scholar
Putnis, A. (2009) Mineral replacement reactions. Pp. 87–124 in: Thermodynamics and Kinetics of Water-Rock Interaction (Oelkers, E.H. and Schott, J., editors). Reviews in Mineralogy and Geochemistry, 70. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Pyle, J.M., Spear, F.S. and Wark, D.A. (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Pp. 337–362 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Reisfeld, R., Gaft, M., Boulon, G., Panczer, C. and Jorgensen, C.K. (1996) Laser-induced luminescence of rare-earth elements in natural fluor-apatites. Journal of Luminescence, 69, 343353.Google Scholar
Ruiz-Agudo, E., Putnis, C.V. and Putnis, A. (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chemical Geology, 383, 132146.Google Scholar
Seixas, L.A.R., David, J. and Stevenson, R. (2012) Geochemistry, Nd isotopes and U–Pb geochronology of a 2350 Ma TTG suite, Minas Gerais, Brazil: Implications for the crustal evolution of the southern São Francisco craton. Precambrian Research, 196–197, 6180.Google Scholar
Sha, L.K. and Chappel, B.W. (1999) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63, 38613881.Google Scholar
Spear, F.S. and Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Pp. 293–336 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Szopa, K., Gaweda, A., Müller, A. and Sikorska, M. (2013) The petrogenesis of granitoid rocks unusually rich in apatite in the Western Tatra Mts. (S-Poland, Western Carpathians). Mineralogy and Petrology, 107, 609627.Google Scholar
Teixeira, W., Ávila, C.A. and Nunes, L.C. (2008) Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fé granitic gneiss and Lajedo granodiorite: implications for Paleoproterozoic evolution of the mineiro belt, southern São Francisco Craton, Brazil. Geologia USP. Série Científica, 8, 5374.Google Scholar
Teixeira, W., Ávila, C.A., Dussin, I.A., Corrêa Neto, A.V., Bongiolo, E.M., Santos, J.O. and Barbosa, N.S. (2015) A juvenile accretion episode (2.35–2.32 Ga) in the Minero belt and its role to the Minas accretionary orogeny: Zircon U-Pb-Hf and geochemical evidences. Precambrian Research, 256, 148169.Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Supplementary material: File

Alves et al. supplementary material

Alves et al. supplementary material 1

Download Alves et al. supplementary material(File)
File 96.8 KB