Article contents
The missing sulphur in mattheddleite, sulphur analysis of sulphates, and paragenetic relations at Leadhills, Scotland
Published online by Cambridge University Press: 05 July 2018
Abstract
Published electron microprobe analyses of mattheddleite, a lead sulpho-silicate apatite from Leadhills, Scotland, have 9–13% IV site deficiencies. However, galena was used as a standard for S, which suggested that low S resulted from a shift in the S-Kα peak. Wavelength scans with a PET crystal show that the S-Kα peak is shifted down by 0.0026 Å for sulphates relative to sulphides. Quantitative analyses show a ∼30% increase of S in mattheddleite using a celestite standard, which fills the IV site, but with Si > S, on average Pb5S1.2Si1.8O11.7Cl0.6(OH)0.4. Direct analysis of oxygen with the electron microprobe implies that the charge imbalance engendered from the inequality of Si and S is compensated with substitution of a vacancy (□), as in Pb5S1.2Si1.8[O11.7□0.3] [Cl0.6(OH)0.4] or Pb5S1.2Si1.8[O11.7(Cl, OH)0.73]. [Cl,OH)0.7 □0.3]. Calculation of OH as l–C1 suggests the presence of both OH- and Cl-dominant mattheddleite at Leadhills, but direct analysis of H is needed to confirm the dominance of OH in the channel site. Wavelength-dispersive analyses of S in apatite and other sulphates must be undertaken with sulphate standards: use of sulphide standards yields a negative error on the order of 10–20% in the resultant S concentration. Reactions of mattheddleite with other Pb minerals at Leadhills show that their stability depends on fluid composition as well as pressure and temperature. An X-ray map of Cl shows complex zoning between Cl-poor and Cl-rich mattheddleite, recording rapid changes in the fluid chemistry during late-stage hydrothermal processes at Leadhills.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 2006
References
- 2
- Cited by