Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T14:35:53.436Z Has data issue: false hasContentIssue false

Minerals of the ammonioalunite—ammoniojarosite series formed on a burning coal dump at Czerwionka, Upper Silesian Coal Basin, Poland

Published online by Cambridge University Press:  05 July 2018

J. Parafiniuk*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
Ł. Kruszewski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
*

Abstract

Ammonioalunite, ammoniojarosite and their solid-solution series found on a burning coal dump at Czerwionka, Upper Silesian Coal Basin, Poland, were examined using powder X-ray diffraction, electron probe microanalysis, inductively coupled plasma mass spectrometry, infrared spectroscopy and thermal analysis methods. The minerals occur as yellow, fine-grained crusts and botryoidal masses in the outer part of a sulphate crust found ∼1 m below the surface. The crust is composed mainly of godovikovite and tschermigite that formed by interaction of sour fire gases or solutions and waste materials beneath the surface of the burning coal dump at temperatures of at least 80—100°C. The crystals often reveal oscillatory zoning due to different Al and Fe contents in thin bands, from near end-members to extensive solid solutions. Our analyses suggest the existence in nature of a complete solid solution between ammonioalunite and ammoniojarosite. They also carry essential amounts of chlorine.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N., Rye, R.O., Nordstrom, D.K., White, L.D. and King, B.S. (1992) Chemical, crystallographic and stable isotope properties of alunite and jarosite from acid-hypersaline lakes. Chemical Geology, 96, 203226.CrossRefGoogle Scholar
Altaner, S.P., Fitzpatrick, J.J., Krohn, M.D., Bethke, P.M., Hayba, D.O., Goss, J.A. and Brown, Z.A. (1988) Ammonium in alunites. American Mineralogist, 73, 114172.Google Scholar
Basciano, L.C. and Peterson, R.C. (2007a) Jarosite-hydronium jarosite solid-solution series with full Fe occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 14641473.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2007b) The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite-hydronium jarosite solid-solution series. Mineralogical Magazine, 71, 427441.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2008) Crystal chemistry of the natrojarosite-jarosite and natrojar-osite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy. American Mineralogist, 93, 853862.CrossRefGoogle Scholar
Bayer, G., Kahr, G. and Mueller-Vonmoos, M. (1982) Reactions of ammonium sulphates with kaolinite and other silicate and oxide minerals. Clay Minerals, 17, 271283.CrossRefGoogle Scholar
Breitinger, D.K., Mohr, J., Colognesi, D., Parker, S.F., Schukow, H. and Schwab, R.G. (2001) Vibrational spectra of augelites A12(OH)3(XO4) (X = P, As, V). Journal of Molecular Structure, 563-564, 377382.CrossRefGoogle Scholar
Chesnokov, B.V. and Shcherbakova, J.P. (1991) Mineralogiya gorelykh otvalov Chelyabinskogo ugolnogo basseina (opyt Mineralogii tekhnogeneza). Nauka, Moscow [in Russian].Google Scholar
Culka, A., Jehlička, H. and Němec, I. (2008) Raman and infrared spectroscopic study of boussingaultite and nickelboussingaultite. Spectrochimica Ada Part A: Molecular and Biomolecular Spectroscopy, 73, 420423.CrossRefGoogle ScholarPubMed
Dokoupilová, P., Sracek, O. and Losos, Z. (2007) Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineralogical Magazine, 71, 443460.CrossRefGoogle Scholar
Drouet, C. and Navrotsky, A. (2003) Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Ada, 11, 20632076.CrossRefGoogle Scholar
Drouet, C, Pass, K.L., Baron, D., Draucker, S. and Navrotsky, A. (2004) Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Ada, 68, 21972205.CrossRefGoogle Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. Pp. 405452 in: Sulfate Minerals — Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Filippidis, A., Georgakopoulos, A. and Kassoli-Fournaraki, A. (1996) Mineralogical components of some thermally decomposed lignite and lignite ash from the Ptolemais basin, Greece. International Journal of Coal Geology, 30, 303314.CrossRefGoogle Scholar
Fleischer, M., Cabri, L., Chao, G.Y. and Pabst, A. (1980) New mineral names. American Mineralogist, 65, 10651070.Google Scholar
Frost, R.L., Wain, D.L., Wills, R.-A., Musemeci, A. and Martens, W. (2006) A thermogravimetric study of the alunites of sodium, potassium and ammonium. Thermochimica Ada, 443, 5661.CrossRefGoogle Scholar
Frost, R.L., Bahfenne, S., Graham, J. and Reddy, B.J. (2008) The structure of selected magnesium carbonate minerals — A near-infrared and mid-infrared spectroscopic study. Polyhedron, 27, 20692076.CrossRefGoogle Scholar
Gabzdyl, W. (1994) Geologia złóż wegla. Polska Agencja Ekologiczna, Warszawa [in Polish].Google Scholar
Golden, D.C., Ming, D.W., Morris, R.V. and Graff, T.G. (2008) Hydrothermal synthesis of hematite spherules and jarosite: Implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars. American Mineralogist, 93, 12011214.CrossRefGoogle Scholar
Grohol, D., Nocera, D.C. and Papoutskis, D. (2003) Magnetism of pure iron jarosites. Physical Review B: Condensed Matter and Material Physics, 67, 064401/113.CrossRefGoogle Scholar
Hammer, V.M.F. and Beran, A. (1991) Variations in OH concentration of rutiles from different geological environments. Mineralogy and Petrology, 45, 19.CrossRefGoogle Scholar
Hammer, V.M.F., Libowitzky, E. and Rossman, G.R. (1998) Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2[Si3O8(OH)], and serandite, NaMn2[Si3O8(OH)]. American Mineralogist, 83, 569576.CrossRefGoogle Scholar
Hudson-Edwards, K.A., Schell, C. and Macklin, M.G. (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Applied Geochemistry, 14, 10151030.CrossRefGoogle Scholar
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341.Google Scholar
Jirasek, J. (2001) Thermal Changes of the Rocks in the Dump Pile of the Kateřina Colliery in Radvanice (Eastern Bohemia). Ostrava: VSB — Technical University of Ostrava, Institute of Geological Engineering, 541, 69.Google Scholar
Kim, J., Schmitt, U.W., Gruetzmacher, J.A., Voth, G.A. and Scherer, N.E. (2002) The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. Journal of Chemical Physics, 116, 737746.CrossRefGoogle Scholar
Kubisz, J. (1971) Studies on synthetic alkali-hydronium jarosites II: Thermal investigations. Mineralogia Polonica, 2, 5160.Google Scholar
Lapham, D.M., Barnes, J.H., Downey, W.F., Jr. and Finkelman, R.B. (1980) Mineralogy associated with burning anthracite deposits of Eastern Pennsylvania. Mineral Resource Report 78, Pennsylvania Geological Survey (Commonwealth of Pennsylvania), Harrisburg, Pennsylvania, USA.Google Scholar
Lueth, V.W., Rye, R.O. and Peters, L. (2005) “Sour gas” hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift. Chemical Geology, 215, 339360.CrossRefGoogle Scholar
Madden, M.E.E., Bodnar, RJ. and Rimstidt, J.D. (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature, 431 (7010), 821823.CrossRefGoogle ScholarPubMed
Majzlan, I, Speziale, S., Duffy, T.S. and Burns, P.C. (2006) Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6 . Physics and Chemistry of Minerals, 33, 567573.CrossRefGoogle Scholar
Masalehdani, M.N.-N., Mees, F., Dubois, M., Coquinot, Y., Potdevin, J.-L., Fialin, M. and Blanc-Valerron, M.-M. (2009) Condensate minerals from a burning coal-waste heap in Avion, Northern France. The Canadian Mineralogist, 47, 573591.CrossRefGoogle Scholar
Nielsen, U.G., Majzlan, I., Phillips, B., Ziliox, M. and Grey, C.P. (2007) Characterization of defects and the local structure in natural and synthetic alunite (K,Na,H3O)Al3(SO4)2(OH)6 by multi-nuclear solid-state NMR spectroscopy. American Mineralogist, 92, 587597.CrossRefGoogle Scholar
Odum, J.K., Hauff, P.L. and Farrow, R.A. (1982) A new occurrence of ammoniojarosite in Buffalo, Wyoming. The Canadian Mineralogist, 20, 9195.Google Scholar
Papike, J.J., Karner, J.M. and Shearer, C.K. (2006a) Comparative planetary mineralogy: Implications of Martian and terrestrial jarosite. A crystal chemical perspective. Geochimica et Cosmochimica Ada, 70, 13091321.CrossRefGoogle Scholar
Papike, J.J., Karner, J.M., Spilde, M.N. and Shearer, C.K. (2006b) Terrestrial analogues of Martian sulfates: Major and minor element systematics of alunitejarosite from Goldfield, Nevada. American Mineralogist, 91, 11971200.CrossRefGoogle Scholar
Papike, J.J., Burger, P.V., Karner, J.M., Shearer, C.K. and Lueth, V.W. (2007) Terrestrial analogues of Martian jarosites: Major, minor element systematics and Na-K zoning in selected samples. American Mineralogist, 92, 444447.CrossRefGoogle Scholar
Parafiniuk, J. and Kruszewski, Ł. (2009) Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geological Quarterly, 53, 3347.Google Scholar
Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkleman, R.B., Blake, D.R., McCormack, J.K. and Schroeder, P. (2007) The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72, 124140.CrossRefGoogle Scholar
Pichou, J.L. and Pouchoir, F. (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Analysis 20, 104105.Google Scholar
Risti, M., Svetozar, M. and Orehovec, Z. (2005) Thermal decomposition of synthetic ammonium jarosite. Journal of Molecular Structure, 744—747, 295300.CrossRefGoogle Scholar
Rye, R.O. and Alpers, C.N. (1997) The stable isotope geochemistry of jarosite. U.S. Geological Survey Open-File Reports, 88-97.CrossRefGoogle Scholar
Rye, R.O., Bethke, P.M. and Wasserman, M.D. (1992) The stable isotope geochemistry of acid sulfate alteration. Economic Geology, 87, 225262.CrossRefGoogle Scholar
Scott, K.M. (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. American Mineralogist, 72, 178187.Google Scholar
Sindern, S., Warnsloh, J., Witzke, T., Havenith, V., Neef, R. and Etoundi, Y. (2005) Mineralogy and geochemistry of vents formed on the burning coal mining waste dump Anna I, Alsdorf, Germany. European Journal of Mineralogy, 17, 130.Google Scholar
Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V. and Kalugin, V.M. (2005) Combustion Metamorphism. Publishing House of the SB RAS. Novosibirsk [in Russian].Google Scholar
Srebrodolskiy, B.I. (1989) Tainy Sezonnykh Mineralov. Nauka, Moscow [in Russian].Google Scholar
Stoffregen, R.E. (1993) Stability relations of jarosite to natrojarosite at 150—250°C. Geochimica et Cosmochimica Ada, 57, 24172429.CrossRefGoogle Scholar
Stracher, G.B. (2007) The origin of gas-vent minerals: Isochemical and mass-transfer processes. Geology of coal fires: case studies from around the world (edited by Glenn B. Stracher). The Geological Society of America, Reviews in Engineering Geology XVIII, 91-96.Google Scholar
Stracher, G.B., Prakash, A., Schroeder, P., McCormack, J., Zhang, X., Van Dijk, P. and Blake, D. (2005) New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. American Mineralogist, 90, 17291739.CrossRefGoogle Scholar
Toumi, K and Tlili, A. (2008) Rietveld refinement and spectroscopic study of alunite from el Gnater, central Tunisia. Russian Journal of Inorganic Chemistry, 53, 18451853.CrossRefGoogle Scholar
Wang, R., Bradley, W.F. and Steinfink, H. (1965) The crystal structure of alunite. Ada Crystallographica, 18, 249252.CrossRefGoogle Scholar
Wang, H., Jones, F.S., Bigham, J.M. and Tuovinen, O.H. (2006) Synthesis and properties of ammoniojarosite and nanocrystalline schwertmannite prepared with iron-oxidizing acidophiles at 22 to 65°C. Proceedings 18th World Congress of Soil Science. IUSS, Philadelphia (USA), Abstract #44-7.Google Scholar
Wilkins, R.W.T., Mateen, A. and West, G. (1974) The spectroscopic study of oxonium ions in minerals. American Mineralogist, 59, 811819.Google Scholar
Witzke, T. and Riiger, F. (1998) Die Minerale der Ronneburger und Culmitzscher Lagerstatten in Thiiringen. Lapis, 23(7/8), 2664.Google Scholar
Žáček, V. and Ondruš, P. (1998) Mineralogy of recently formed sublimates from Kateřina colliery in Radvanice, Eastern Bohemia, Czech Republic. Bulletin of the Czech Geological Survey, 73, 289302.Google Scholar