Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T09:17:53.193Z Has data issue: false hasContentIssue false

The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part III. Percleveite-(La), La2Si2O7, a new REE disilicate mineral

Published online by Cambridge University Press:  22 October 2020

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygina str. 19, 119991Moscow, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432Chernogolovka, Moscow region, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Dmitriy I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Dmitriy A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Aleksey M. Kuznetsov
Affiliation:
Oktyabrskaya str., 5-337, 454071Chelyabinsk, Russia
Sergey N. Britvin
Affiliation:
Institute of Earth Sciences, St Petersburg State University, University Embankment 7/9, 199034St Petersburg, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
*
*Author for correspondence: Anatoly V. Kasatkin, E-mail: [email protected]

Abstract

The new mineral percleveite-(La) (IMA2019–037), ideally La2Si2O7, was found in polymineralic nodules of the Mochalin Log REE deposit, Chelyabinsk Oblast, South Urals, Russia. It is associated with allanite-(Ce), allanite-(La), bastnäsite-(Ce), bastnäsite-(La), ferriallanite-(Ce), ferriallanite-(La), ferriperbøeite-(Ce), ferriperbøeite-(La), fluorbritholite-(Ce), hydroxylbastnäsite-(Ce), perbøeite-(Ce), perbøeite-(La), törnebohmite-(Ce) and törnebohmite-(La). Percleveite-(La) occurs as isolated anhedral grains commonly up to 0.2 mm × 0.4 mm and very rarely up to 1 mm × 1 mm. The new mineral is transparent with greasy lustre. The mineral is very pale yellow to colourless in thin fragments to light yellow in aggregates. It is brittle, with imperfect {001} cleavage and an uneven fracture. Mohs’ hardness is ca. 6. Dcalc = 5.094 g cm–3. Under the microscope, percleveite-(La) is non-pleochroic, optically uniaxial (+), ω = 1.825(10) and ɛ = 1.835(10). The Raman spectrum is given. Chemical data (wt.%, electron-microprobe) are: La2O3 36.80, Ce2O3 31.22, Pr2O3 1.57, Nd2O3 2.96, SiO2 26.73, total 99.28. The empirical formula based on 7 O apfu is (La1.02Ce0.86Nd0.08Pr0.04)Σ2.00Si2.00O7. Percleveite-(La) is tetragonal, P41; the unit-cell parameters are: a = 6.8482(3), c = 24.8550(13) Å, V = 1165.64(11) Å3 and Z = 8. The strongest reflections in the powder X-ray diffraction pattern [d, Å(I)(hkl)] are: 4.194(18)(113), 3.564(16)(106), 3.349(16)(201,202), 3.157(100)(203,116,008), 3.043(22)(211), 2.934(39)(122), 2.893(29)(213) and 2.864(21)(117). The crystal structure of percleveite-(La) is solved from the single-crystal X-ray diffraction data [R = 0.0617 for 2831 unique reflections with I > 2σ(I)]. The new mineral is named as an analogue of percleveite-(Ce) with La predominance over the rare-earth elements.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Elena Zhitova

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.34. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Baglio, J.A. and Dann, J.N. (1972) The crystal structure of beta strontium pyrovanadate. Journal of Solid State Chemistry, 4, 8793.CrossRefGoogle Scholar
Bjørlykke, H. (1937) The granite pegmatites of southern Norway. American Mineralogist: Journal of Earth and Planetary Materials, 22, 241255.Google Scholar
Boudin, S., Grandin, A., Borel, M.M., Leclaire, A. and Raveau, B. (1993) Redetermination of the β-Ca2P2O7 structure. Acta Crystallographica, C49, 20622064.Google Scholar
Bretheau-Raynal, F., Dalbiez, J.P. and Drifford, M. (1979) Raman spectroscopic study of thortveitite structure silicates. Journal of Raman Spectroscopy, 8, 3942.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Černý, P. and Ercit, T. S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Deng, B. and Ibers, J.A. (2005) Dicerium disilicate, Ce2[Si2O7]. Acta Crystallographica, E61, i76i78.Google Scholar
Edhokkar, F., Hadricha, A., Graiab, M. and Mhiria, T. (2012) Synthesis and crystal structure of Sr2As2O7 from single-crystal data. IOP Conference Series: Materials Science and Engineering, 28, 012017.CrossRefGoogle Scholar
Felsche, J. (1973) The crystal chemistry of the rare-earth silicates. Structure and Bonding (Berlin), 13, 99197.CrossRefGoogle Scholar
Flack, H. D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876881.CrossRefGoogle Scholar
Fleet, M. E. and Liu, X. (2003) Rare earth disilicates R2Si2O7 (R = Gd, Tb, Dy, Ho): type B. Zeitschrift für Kristallographie-Crystalline Materials, 218, 795801.CrossRefGoogle Scholar
Guastoni, A., Nestola, F., Ferraris, C. and Parodi, G. (2012) Xenotime-(Y) and Sn-rich thortveitite in miarolitic pegmatites from Baveno, Southern Alps, Italy. Mineralogical Magazine, 76, 761767.CrossRefGoogle Scholar
Holtstam, D. and Andersson, U.B. (2007) The REE minerals of the Bastnäs-type deposits, south-central Sweden. The Canadian Mineralogist, 45, 10731114.CrossRefGoogle Scholar
Holtstam, D., Norrestam, R. and Andersson, U.B. (2003) Percleveite-(Ce) – a new lanthanide disilicate mineral from Bastnäs, Skinnskatteberg, Sweden. European Journal of Mineralogy, 15, 725731.CrossRefGoogle Scholar
Holtstam, D., Andersson, U. B., Broman, C. and Mansfeld, J. (2014) Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden. Mineralium Deposita, 49, 933966.CrossRefGoogle Scholar
Kaindl, R., Többens, D.M. and Kahlenberg, V. (2010) DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7. Journal of Raman Spectroscopy, 42, 7885, https://doi.org/10.1002/jrs.2657CrossRefGoogle Scholar
Kaminskii, A.A., Rhee, H., Lux, O., Eichler, H.J., Bohatý, L., Becker, P., Liebertz, J., Ueda, K., Shirakawa, A., Koltashev, V.V., Hanuza, J., Dong, J. and Stavrovskii, D.B. (2011) Many-phonon stimulated Raman scattering and related cascaded and cross-cascaded χ(3)-nonlinear optical effects in melilite-type crystal Ca2ZnSi2O7. Laser Physics Letters, 8, 859874.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A., Belakovskiy, D.I., Plášil, J. and Kuznetsov, A.M. (2019a) Percleveite-(La), IMA 2019-037. CNMNC Newsletter No. 51. Mineralogical Magazine, 83, 757761.Google Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A., Belakovskiy, D.I. and Pushcharovsky, D.Y. (2019b) Alexkuznetsovite-(La), IMA 2019–081. CNMNC Newsletter No. 52. Mineralogical Magazine, 83, 887893.Google Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Polekhovsky, Yu.S., Agakhanov, A.A., Belakovskiy, D.I., Kuznetsov, A.M., Britvin, S.N. and Pushcharovsky, D.Yu. (2020a) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part I. New gatelite-group minerals ferriperbøeite-(La), (CaLa3)(Fe3+Al2Fe2+)[Si2O7][SiO4]3O(OH)2 and perbøeite-(La), (CaLa3)(Al3Fe2+)[Si2O7][SiO4]3O(OH)2. Mineralogical Magazine, 84, 593607.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Ksenofontov, D.A., Agakhanov, A.A., Belakovskiy, D.I., Polekhovsky, Yu.S., Kuznetsov, A.M., Britvin, S.N., Pushcharovsky, D.Yu. and Nestola, F. (2020b) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part II. Radekškodaite-(La), (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3 and radekškodaite-(Ce), (CaCe5)(Al4Fe2+)[Si2O7] [SiO4]5O(OH)3, two new minerals with a novel-type structure belonging to epidote-törnebohmite polysomatic series. Mineralogical Magazine, 84, https://doi.org/10.1180/mgm.2020.64CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A. and Belakovskiy, D.I. (2020c) Alexkuznetsovite-(Ce), IMA 2019–118. CNMNC Newsletter No.54. Mineralogical Magazine, 84, 359365, https://doi.org/10.1180/mgm.2020.21Google Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Agakhanov, A.A., Belakovskiy, D.I., Kuznetsov, A.M. and Pushcharovsky, D.Y. (2020d) Biraite-(La), IMA 2020-020. CNMNC Newsletter No.56; Mineralogical Magazine, 84, 623627, https://doi.org/10.1180/mgm.2020.60Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its 209 application. The Canadian Mineralogist, 41, 9891002.Google Scholar
Osipov, A.S., Antonov, A.A., Panikorovskii, T.L., Zolotarev, A.A. jr. (2018) Hydrated CO3-bearing analog of manganoeudialyte from alkali pegmatites of the Konder Pluton, Khabarovsk Krai. Geology of Ore Deposits, 60, 726735.CrossRefGoogle Scholar
Sahlström, F., Jonsson, E., Högdahl, K., Troll, V. R., Harris, C., Jolis, E. M. and Weis, F. (2019) Interaction between high-temperature magmatic fluids and limestone explains ‘Bastnäs-type’ REE deposits in central Sweden. Scientific Reports, 9, 19.CrossRefGoogle ScholarPubMed
Sheldrick, G.M. (2008): A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Smolin, Y. I. and Shepelev, Y. F. (1970) The crystal structures of the rare earth pyrosilicates. Acta Crystallographica, B26, 484492.CrossRefGoogle Scholar
Soliman Abu Elatta, A.M. (2018) El Seboah peralkaline A-type magmatism, South Western Desert, Egypt: evidences for the HFSE and REE enrichment. Arabian Journal of Geosciences, 11, 118.Google Scholar
Spandler, C., Hermann, J. and Rubatto, D. (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. American Mineralogist, 89, 17951806.CrossRefGoogle Scholar
Voloshin, A.V., Pakhomovskii, Ya.A. and Tyusheva, F.N. (1985) Keivyite-(Y) – a new yttrium diorthosilicate, and thalénite from amazonite pegmatites of the Kola Peninsula. Diortho- and triorthosilicates of yttrium. Mineralogiceskij Zhurnal, 7, 7994 [in Russian].Google Scholar
Weil, M., Djordjević, T., Lengauer, C.L. and Kolitsch, U. (2009) Investigations in the systems Sr–As–O–X (X = H, Cl): Preparation and crystal structure refinements of the anhydrous arsenates(V) Sr3(AsO4)2, Sr2As2O7, α- and β-SrAs2O6, and of the apatite-type phases Sr5(AsO4)3OH and Sr5(AsO4)3Cl. Solid State Sciences, 11, 21112117.CrossRefGoogle Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material

Download Kasatkin et al. supplementary material(File)
File 281.5 KB